Challenges of streaming in the visualization process
- Autores
- Escarza, Sebastián; Castro, Silvia Mabel; Martig, Sergio R.
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- In visualization applications, the data has been increasing its size at very big rates. Processing of the whole data in main memory becomes impossible due to size limitations. A way of dealing with this constraint is to apply streaming to the visualization. The key idea is to exploit data locality in relationships to produce constant and continuous streams of data flowing through the visualization process. Issues like data dependencies, stream re-arranging, use of progressive algorithms, etc. have to be taken in consideration. In this paper we outline the main issues derived from the application of streaming in visualization. Our main objective is their identification as a previous step to define a general streaming framework for visualization. Some of the results presented here arose during the design and development of ad-hoc prototypes that we made as an initial approximation to the problem.
Workshop de Computación Gráfica, Imágenes y Visualización (WCGIV)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
vsualization
streaming
streaming data visualization - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/21777
Ver los metadatos del registro completo
id |
SEDICI_468c22ffecfaa52a6ed9349228ecd2b4 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/21777 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Challenges of streaming in the visualization processEscarza, SebastiánCastro, Silvia MabelMartig, Sergio R.Ciencias Informáticasvsualizationstreamingstreaming data visualizationIn visualization applications, the data has been increasing its size at very big rates. Processing of the whole data in main memory becomes impossible due to size limitations. A way of dealing with this constraint is to apply streaming to the visualization. The key idea is to exploit data locality in relationships to produce constant and continuous streams of data flowing through the visualization process. Issues like data dependencies, stream re-arranging, use of progressive algorithms, etc. have to be taken in consideration. In this paper we outline the main issues derived from the application of streaming in visualization. Our main objective is their identification as a previous step to define a general streaming framework for visualization. Some of the results presented here arose during the design and development of ad-hoc prototypes that we made as an initial approximation to the problem.Workshop de Computación Gráfica, Imágenes y Visualización (WCGIV)Red de Universidades con Carreras en Informática (RedUNCI)2008-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/21777enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:27:37Zoai:sedici.unlp.edu.ar:10915/21777Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:27:37.577SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Challenges of streaming in the visualization process |
title |
Challenges of streaming in the visualization process |
spellingShingle |
Challenges of streaming in the visualization process Escarza, Sebastián Ciencias Informáticas vsualization streaming streaming data visualization |
title_short |
Challenges of streaming in the visualization process |
title_full |
Challenges of streaming in the visualization process |
title_fullStr |
Challenges of streaming in the visualization process |
title_full_unstemmed |
Challenges of streaming in the visualization process |
title_sort |
Challenges of streaming in the visualization process |
dc.creator.none.fl_str_mv |
Escarza, Sebastián Castro, Silvia Mabel Martig, Sergio R. |
author |
Escarza, Sebastián |
author_facet |
Escarza, Sebastián Castro, Silvia Mabel Martig, Sergio R. |
author_role |
author |
author2 |
Castro, Silvia Mabel Martig, Sergio R. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas vsualization streaming streaming data visualization |
topic |
Ciencias Informáticas vsualization streaming streaming data visualization |
dc.description.none.fl_txt_mv |
In visualization applications, the data has been increasing its size at very big rates. Processing of the whole data in main memory becomes impossible due to size limitations. A way of dealing with this constraint is to apply streaming to the visualization. The key idea is to exploit data locality in relationships to produce constant and continuous streams of data flowing through the visualization process. Issues like data dependencies, stream re-arranging, use of progressive algorithms, etc. have to be taken in consideration. In this paper we outline the main issues derived from the application of streaming in visualization. Our main objective is their identification as a previous step to define a general streaming framework for visualization. Some of the results presented here arose during the design and development of ad-hoc prototypes that we made as an initial approximation to the problem. Workshop de Computación Gráfica, Imágenes y Visualización (WCGIV) Red de Universidades con Carreras en Informática (RedUNCI) |
description |
In visualization applications, the data has been increasing its size at very big rates. Processing of the whole data in main memory becomes impossible due to size limitations. A way of dealing with this constraint is to apply streaming to the visualization. The key idea is to exploit data locality in relationships to produce constant and continuous streams of data flowing through the visualization process. Issues like data dependencies, stream re-arranging, use of progressive algorithms, etc. have to be taken in consideration. In this paper we outline the main issues derived from the application of streaming in visualization. Our main objective is their identification as a previous step to define a general streaming framework for visualization. Some of the results presented here arose during the design and development of ad-hoc prototypes that we made as an initial approximation to the problem. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/21777 |
url |
http://sedici.unlp.edu.ar/handle/10915/21777 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260113765695488 |
score |
13.13397 |