Challenges of streaming in the visualization process

Autores
Escarza, Sebastián; Castro, Silvia Mabel; Martig, Sergio R.
Año de publicación
2008
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
In visualization applications, the data has been increasing its size at very big rates. Processing of the whole data in main memory becomes impossible due to size limitations. A way of dealing with this constraint is to apply streaming to the visualization. The key idea is to exploit data locality in relationships to produce constant and continuous streams of data flowing through the visualization process. Issues like data dependencies, stream re-arranging, use of progressive algorithms, etc. have to be taken in consideration. In this paper we outline the main issues derived from the application of streaming in visualization. Our main objective is their identification as a previous step to define a general streaming framework for visualization. Some of the results presented here arose during the design and development of ad-hoc prototypes that we made as an initial approximation to the problem.
Workshop de Computación Gráfica, Imágenes y Visualización (WCGIV)
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
vsualization
streaming
streaming data visualization
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/21777

id SEDICI_468c22ffecfaa52a6ed9349228ecd2b4
oai_identifier_str oai:sedici.unlp.edu.ar:10915/21777
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Challenges of streaming in the visualization processEscarza, SebastiánCastro, Silvia MabelMartig, Sergio R.Ciencias Informáticasvsualizationstreamingstreaming data visualizationIn visualization applications, the data has been increasing its size at very big rates. Processing of the whole data in main memory becomes impossible due to size limitations. A way of dealing with this constraint is to apply streaming to the visualization. The key idea is to exploit data locality in relationships to produce constant and continuous streams of data flowing through the visualization process. Issues like data dependencies, stream re-arranging, use of progressive algorithms, etc. have to be taken in consideration. In this paper we outline the main issues derived from the application of streaming in visualization. Our main objective is their identification as a previous step to define a general streaming framework for visualization. Some of the results presented here arose during the design and development of ad-hoc prototypes that we made as an initial approximation to the problem.Workshop de Computación Gráfica, Imágenes y Visualización (WCGIV)Red de Universidades con Carreras en Informática (RedUNCI)2008-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/21777enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:27:37Zoai:sedici.unlp.edu.ar:10915/21777Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:27:37.577SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Challenges of streaming in the visualization process
title Challenges of streaming in the visualization process
spellingShingle Challenges of streaming in the visualization process
Escarza, Sebastián
Ciencias Informáticas
vsualization
streaming
streaming data visualization
title_short Challenges of streaming in the visualization process
title_full Challenges of streaming in the visualization process
title_fullStr Challenges of streaming in the visualization process
title_full_unstemmed Challenges of streaming in the visualization process
title_sort Challenges of streaming in the visualization process
dc.creator.none.fl_str_mv Escarza, Sebastián
Castro, Silvia Mabel
Martig, Sergio R.
author Escarza, Sebastián
author_facet Escarza, Sebastián
Castro, Silvia Mabel
Martig, Sergio R.
author_role author
author2 Castro, Silvia Mabel
Martig, Sergio R.
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
vsualization
streaming
streaming data visualization
topic Ciencias Informáticas
vsualization
streaming
streaming data visualization
dc.description.none.fl_txt_mv In visualization applications, the data has been increasing its size at very big rates. Processing of the whole data in main memory becomes impossible due to size limitations. A way of dealing with this constraint is to apply streaming to the visualization. The key idea is to exploit data locality in relationships to produce constant and continuous streams of data flowing through the visualization process. Issues like data dependencies, stream re-arranging, use of progressive algorithms, etc. have to be taken in consideration. In this paper we outline the main issues derived from the application of streaming in visualization. Our main objective is their identification as a previous step to define a general streaming framework for visualization. Some of the results presented here arose during the design and development of ad-hoc prototypes that we made as an initial approximation to the problem.
Workshop de Computación Gráfica, Imágenes y Visualización (WCGIV)
Red de Universidades con Carreras en Informática (RedUNCI)
description In visualization applications, the data has been increasing its size at very big rates. Processing of the whole data in main memory becomes impossible due to size limitations. A way of dealing with this constraint is to apply streaming to the visualization. The key idea is to exploit data locality in relationships to produce constant and continuous streams of data flowing through the visualization process. Issues like data dependencies, stream re-arranging, use of progressive algorithms, etc. have to be taken in consideration. In this paper we outline the main issues derived from the application of streaming in visualization. Our main objective is their identification as a previous step to define a general streaming framework for visualization. Some of the results presented here arose during the design and development of ad-hoc prototypes that we made as an initial approximation to the problem.
publishDate 2008
dc.date.none.fl_str_mv 2008-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/21777
url http://sedici.unlp.edu.ar/handle/10915/21777
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260113765695488
score 13.13397