A resistant method for landmark-based analysis of individual asymmetry in two dimensions

Autores
Torcida, Sebastián; González, Paula Natalia; Lotto, Federico Pablo
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Background: Symmetry of biological structures can be thought as the repetition of their parts in different positions and orientations. Asymmetry analyses, therefore, focuses on identifying and measuring the location and extent of symmetry departures in such structures. In the context of geometric morphometrics, a key step when studying morphological variation is the estimation of the symmetric shape. The standard procedure uses the least-squares Procrustes superimposition, which by averaging shape differences often underestimates the symmetry departures thus leading to an inaccurate description of the asymmetry pattern. Moreover, the corresponding asymmetry values are neither geometrically intuitive nor visually perceivable. Methods: In this work, a resistant method for landmark-based asymmetry analysis of individual bilateral symmetric structures in 2D is introduced. A geometrical derivation of this new approach is offered, while its advantages in comparison with the standard method are examined and discussed through a few illustrative examples. Results: Experimental tests on both artificial and real data show that asymmetry is more effectively measured by using the resistant method because the underlying symmetric shape is better estimated. Therefore, the most asymmetric (respectively symmetric) landmarks are better determined through their large (respectively small) residuals. The percentage of asymmetry that is accounted for by each landmark is an additional revealing measure the new method offers which agrees with the displayed results while helping in their biological interpretation. Conclusions: The resistant method is a useful exploratory tool for analyzing shape asymmetry in 2D, and it might be the preferable method whenever a non homogeneous deformation of bilateral symmetric structures is possible. By offering a more detailed and rather exhaustive explanation of the asymmetry pattern, this new approach will hopefully contribute to improve the quality of biological or developmental inferences.
Facultad de Ciencias Naturales y Museo
Instituto de Genética Veterinaria
Materia
Ciencias Naturales
landmarks
matching and object symmetry
resistant procrustes method
shape asymmetry
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/85853

id SEDICI_b006c6919d9dad6b10f95a8de2fd5824
oai_identifier_str oai:sedici.unlp.edu.ar:10915/85853
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling A resistant method for landmark-based analysis of individual asymmetry in two dimensionsTorcida, SebastiánGonzález, Paula NataliaLotto, Federico PabloCiencias Naturaleslandmarksmatching and object symmetryresistant procrustes methodshape asymmetryBackground: Symmetry of biological structures can be thought as the repetition of their parts in different positions and orientations. Asymmetry analyses, therefore, focuses on identifying and measuring the location and extent of symmetry departures in such structures. In the context of geometric morphometrics, a key step when studying morphological variation is the estimation of the symmetric shape. The standard procedure uses the least-squares Procrustes superimposition, which by averaging shape differences often underestimates the symmetry departures thus leading to an inaccurate description of the asymmetry pattern. Moreover, the corresponding asymmetry values are neither geometrically intuitive nor visually perceivable. Methods: In this work, a resistant method for landmark-based asymmetry analysis of individual bilateral symmetric structures in 2D is introduced. A geometrical derivation of this new approach is offered, while its advantages in comparison with the standard method are examined and discussed through a few illustrative examples. Results: Experimental tests on both artificial and real data show that asymmetry is more effectively measured by using the resistant method because the underlying symmetric shape is better estimated. Therefore, the most asymmetric (respectively symmetric) landmarks are better determined through their large (respectively small) residuals. The percentage of asymmetry that is accounted for by each landmark is an additional revealing measure the new method offers which agrees with the displayed results while helping in their biological interpretation. Conclusions: The resistant method is a useful exploratory tool for analyzing shape asymmetry in 2D, and it might be the preferable method whenever a non homogeneous deformation of bilateral symmetric structures is possible. By offering a more detailed and rather exhaustive explanation of the asymmetry pattern, this new approach will hopefully contribute to improve the quality of biological or developmental inferences.Facultad de Ciencias Naturales y MuseoInstituto de Genética Veterinaria2016info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf270-282http://sedici.unlp.edu.ar/handle/10915/85853enginfo:eu-repo/semantics/altIdentifier/issn/2095-4689info:eu-repo/semantics/altIdentifier/doi/10.1007/s40484-016-0086-xinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:16:44Zoai:sedici.unlp.edu.ar:10915/85853Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:16:44.494SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv A resistant method for landmark-based analysis of individual asymmetry in two dimensions
title A resistant method for landmark-based analysis of individual asymmetry in two dimensions
spellingShingle A resistant method for landmark-based analysis of individual asymmetry in two dimensions
Torcida, Sebastián
Ciencias Naturales
landmarks
matching and object symmetry
resistant procrustes method
shape asymmetry
title_short A resistant method for landmark-based analysis of individual asymmetry in two dimensions
title_full A resistant method for landmark-based analysis of individual asymmetry in two dimensions
title_fullStr A resistant method for landmark-based analysis of individual asymmetry in two dimensions
title_full_unstemmed A resistant method for landmark-based analysis of individual asymmetry in two dimensions
title_sort A resistant method for landmark-based analysis of individual asymmetry in two dimensions
dc.creator.none.fl_str_mv Torcida, Sebastián
González, Paula Natalia
Lotto, Federico Pablo
author Torcida, Sebastián
author_facet Torcida, Sebastián
González, Paula Natalia
Lotto, Federico Pablo
author_role author
author2 González, Paula Natalia
Lotto, Federico Pablo
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Naturales
landmarks
matching and object symmetry
resistant procrustes method
shape asymmetry
topic Ciencias Naturales
landmarks
matching and object symmetry
resistant procrustes method
shape asymmetry
dc.description.none.fl_txt_mv Background: Symmetry of biological structures can be thought as the repetition of their parts in different positions and orientations. Asymmetry analyses, therefore, focuses on identifying and measuring the location and extent of symmetry departures in such structures. In the context of geometric morphometrics, a key step when studying morphological variation is the estimation of the symmetric shape. The standard procedure uses the least-squares Procrustes superimposition, which by averaging shape differences often underestimates the symmetry departures thus leading to an inaccurate description of the asymmetry pattern. Moreover, the corresponding asymmetry values are neither geometrically intuitive nor visually perceivable. Methods: In this work, a resistant method for landmark-based asymmetry analysis of individual bilateral symmetric structures in 2D is introduced. A geometrical derivation of this new approach is offered, while its advantages in comparison with the standard method are examined and discussed through a few illustrative examples. Results: Experimental tests on both artificial and real data show that asymmetry is more effectively measured by using the resistant method because the underlying symmetric shape is better estimated. Therefore, the most asymmetric (respectively symmetric) landmarks are better determined through their large (respectively small) residuals. The percentage of asymmetry that is accounted for by each landmark is an additional revealing measure the new method offers which agrees with the displayed results while helping in their biological interpretation. Conclusions: The resistant method is a useful exploratory tool for analyzing shape asymmetry in 2D, and it might be the preferable method whenever a non homogeneous deformation of bilateral symmetric structures is possible. By offering a more detailed and rather exhaustive explanation of the asymmetry pattern, this new approach will hopefully contribute to improve the quality of biological or developmental inferences.
Facultad de Ciencias Naturales y Museo
Instituto de Genética Veterinaria
description Background: Symmetry of biological structures can be thought as the repetition of their parts in different positions and orientations. Asymmetry analyses, therefore, focuses on identifying and measuring the location and extent of symmetry departures in such structures. In the context of geometric morphometrics, a key step when studying morphological variation is the estimation of the symmetric shape. The standard procedure uses the least-squares Procrustes superimposition, which by averaging shape differences often underestimates the symmetry departures thus leading to an inaccurate description of the asymmetry pattern. Moreover, the corresponding asymmetry values are neither geometrically intuitive nor visually perceivable. Methods: In this work, a resistant method for landmark-based asymmetry analysis of individual bilateral symmetric structures in 2D is introduced. A geometrical derivation of this new approach is offered, while its advantages in comparison with the standard method are examined and discussed through a few illustrative examples. Results: Experimental tests on both artificial and real data show that asymmetry is more effectively measured by using the resistant method because the underlying symmetric shape is better estimated. Therefore, the most asymmetric (respectively symmetric) landmarks are better determined through their large (respectively small) residuals. The percentage of asymmetry that is accounted for by each landmark is an additional revealing measure the new method offers which agrees with the displayed results while helping in their biological interpretation. Conclusions: The resistant method is a useful exploratory tool for analyzing shape asymmetry in 2D, and it might be the preferable method whenever a non homogeneous deformation of bilateral symmetric structures is possible. By offering a more detailed and rather exhaustive explanation of the asymmetry pattern, this new approach will hopefully contribute to improve the quality of biological or developmental inferences.
publishDate 2016
dc.date.none.fl_str_mv 2016
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/85853
url http://sedici.unlp.edu.ar/handle/10915/85853
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/2095-4689
info:eu-repo/semantics/altIdentifier/doi/10.1007/s40484-016-0086-x
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
270-282
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616039927644160
score 13.070432