Distinct ErbB2 receptor populations differentially interact with beta1 integrin in breast cancer cell models

Autores
Toscani, Andrés Martín; Sampayo, Rocío G.; Barabas, Federico Martín; Fuentes, Federico; Simian, Marina; Coluccio Leskow, Federico
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
ERBB2 is a member of the ERBB family of tyrosine kinase receptors that plays a major role in breast cancer progression. Located at the plasma membrane, ERBB2 forms large clusters in spite of the presence of growth factors. Beta1 integrin, membrane receptor of extracellular matrix proteins, regulates adhesion, migration and invasiveness of breast cancer cells. Physical interaction between beta1 integrin and ERBB2 has been suggested although published data are contradictory. The aim of the present work was to study the interaction between ERBB2 and beta1 integrin in different scenarios of expression and activation. We determined that beta1 integrin and ERBB2 colocalization is dependent on the expression level of both receptors exclusively in adherent cells. In suspension cells, lack of focal adhesions leave integrins free to diffuse on the plasma membrane and interact with ERBB2 even at low expression levels of both receptors. In adherent cells, high expression of beta1 integrin leaves unbound receptors outside focal complexes that diffuse within the plasma membrane and interact with ERBB2 membrane domains. Superresolution imaging showed the existence of two distinct populations of ERBB2: a major population located in large clusters and a minor population outside these structures. Upon ERBB2 overexpression, receptors outside large clusters can freely diffuse at the membrane and interact with integrins. These results reveal how expression levels of beta1 integrin and ERBB2 determine their frequency of colocalization and show that extracellular matrix proteins shape membrane clusters distribution, regulating ERBB2 and beta1 integrin activity in breast cancer cells.
Instituto de Investigaciones Bioquímicas de La Plata
Materia
Ciencias Médicas
Ciencias Exactas
breast cancer cell
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/87363

id SEDICI_af470cebd9e1522f94cf56f3145115ed
oai_identifier_str oai:sedici.unlp.edu.ar:10915/87363
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Distinct ErbB2 receptor populations differentially interact with beta1 integrin in breast cancer cell modelsToscani, Andrés MartínSampayo, Rocío G.Barabas, Federico MartínFuentes, FedericoSimian, MarinaColuccio Leskow, FedericoCiencias MédicasCiencias Exactasbreast cancer cellERBB2 is a member of the ERBB family of tyrosine kinase receptors that plays a major role in breast cancer progression. Located at the plasma membrane, ERBB2 forms large clusters in spite of the presence of growth factors. Beta1 integrin, membrane receptor of extracellular matrix proteins, regulates adhesion, migration and invasiveness of breast cancer cells. Physical interaction between beta1 integrin and ERBB2 has been suggested although published data are contradictory. The aim of the present work was to study the interaction between ERBB2 and beta1 integrin in different scenarios of expression and activation. We determined that beta1 integrin and ERBB2 colocalization is dependent on the expression level of both receptors exclusively in adherent cells. In suspension cells, lack of focal adhesions leave integrins free to diffuse on the plasma membrane and interact with ERBB2 even at low expression levels of both receptors. In adherent cells, high expression of beta1 integrin leaves unbound receptors outside focal complexes that diffuse within the plasma membrane and interact with ERBB2 membrane domains. Superresolution imaging showed the existence of two distinct populations of ERBB2: a major population located in large clusters and a minor population outside these structures. Upon ERBB2 overexpression, receptors outside large clusters can freely diffuse at the membrane and interact with integrins. These results reveal how expression levels of beta1 integrin and ERBB2 determine their frequency of colocalization and show that extracellular matrix proteins shape membrane clusters distribution, regulating ERBB2 and beta1 integrin activity in breast cancer cells.Instituto de Investigaciones Bioquímicas de La Plata2017info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/87363enginfo:eu-repo/semantics/altIdentifier/issn/1932-6203info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0174230info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:17:14Zoai:sedici.unlp.edu.ar:10915/87363Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:17:15.223SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Distinct ErbB2 receptor populations differentially interact with beta1 integrin in breast cancer cell models
title Distinct ErbB2 receptor populations differentially interact with beta1 integrin in breast cancer cell models
spellingShingle Distinct ErbB2 receptor populations differentially interact with beta1 integrin in breast cancer cell models
Toscani, Andrés Martín
Ciencias Médicas
Ciencias Exactas
breast cancer cell
title_short Distinct ErbB2 receptor populations differentially interact with beta1 integrin in breast cancer cell models
title_full Distinct ErbB2 receptor populations differentially interact with beta1 integrin in breast cancer cell models
title_fullStr Distinct ErbB2 receptor populations differentially interact with beta1 integrin in breast cancer cell models
title_full_unstemmed Distinct ErbB2 receptor populations differentially interact with beta1 integrin in breast cancer cell models
title_sort Distinct ErbB2 receptor populations differentially interact with beta1 integrin in breast cancer cell models
dc.creator.none.fl_str_mv Toscani, Andrés Martín
Sampayo, Rocío G.
Barabas, Federico Martín
Fuentes, Federico
Simian, Marina
Coluccio Leskow, Federico
author Toscani, Andrés Martín
author_facet Toscani, Andrés Martín
Sampayo, Rocío G.
Barabas, Federico Martín
Fuentes, Federico
Simian, Marina
Coluccio Leskow, Federico
author_role author
author2 Sampayo, Rocío G.
Barabas, Federico Martín
Fuentes, Federico
Simian, Marina
Coluccio Leskow, Federico
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Ciencias Médicas
Ciencias Exactas
breast cancer cell
topic Ciencias Médicas
Ciencias Exactas
breast cancer cell
dc.description.none.fl_txt_mv ERBB2 is a member of the ERBB family of tyrosine kinase receptors that plays a major role in breast cancer progression. Located at the plasma membrane, ERBB2 forms large clusters in spite of the presence of growth factors. Beta1 integrin, membrane receptor of extracellular matrix proteins, regulates adhesion, migration and invasiveness of breast cancer cells. Physical interaction between beta1 integrin and ERBB2 has been suggested although published data are contradictory. The aim of the present work was to study the interaction between ERBB2 and beta1 integrin in different scenarios of expression and activation. We determined that beta1 integrin and ERBB2 colocalization is dependent on the expression level of both receptors exclusively in adherent cells. In suspension cells, lack of focal adhesions leave integrins free to diffuse on the plasma membrane and interact with ERBB2 even at low expression levels of both receptors. In adherent cells, high expression of beta1 integrin leaves unbound receptors outside focal complexes that diffuse within the plasma membrane and interact with ERBB2 membrane domains. Superresolution imaging showed the existence of two distinct populations of ERBB2: a major population located in large clusters and a minor population outside these structures. Upon ERBB2 overexpression, receptors outside large clusters can freely diffuse at the membrane and interact with integrins. These results reveal how expression levels of beta1 integrin and ERBB2 determine their frequency of colocalization and show that extracellular matrix proteins shape membrane clusters distribution, regulating ERBB2 and beta1 integrin activity in breast cancer cells.
Instituto de Investigaciones Bioquímicas de La Plata
description ERBB2 is a member of the ERBB family of tyrosine kinase receptors that plays a major role in breast cancer progression. Located at the plasma membrane, ERBB2 forms large clusters in spite of the presence of growth factors. Beta1 integrin, membrane receptor of extracellular matrix proteins, regulates adhesion, migration and invasiveness of breast cancer cells. Physical interaction between beta1 integrin and ERBB2 has been suggested although published data are contradictory. The aim of the present work was to study the interaction between ERBB2 and beta1 integrin in different scenarios of expression and activation. We determined that beta1 integrin and ERBB2 colocalization is dependent on the expression level of both receptors exclusively in adherent cells. In suspension cells, lack of focal adhesions leave integrins free to diffuse on the plasma membrane and interact with ERBB2 even at low expression levels of both receptors. In adherent cells, high expression of beta1 integrin leaves unbound receptors outside focal complexes that diffuse within the plasma membrane and interact with ERBB2 membrane domains. Superresolution imaging showed the existence of two distinct populations of ERBB2: a major population located in large clusters and a minor population outside these structures. Upon ERBB2 overexpression, receptors outside large clusters can freely diffuse at the membrane and interact with integrins. These results reveal how expression levels of beta1 integrin and ERBB2 determine their frequency of colocalization and show that extracellular matrix proteins shape membrane clusters distribution, regulating ERBB2 and beta1 integrin activity in breast cancer cells.
publishDate 2017
dc.date.none.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/87363
url http://sedici.unlp.edu.ar/handle/10915/87363
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1932-6203
info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0174230
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616045602537472
score 13.070432