Ecuación fundamental de Euler

Autores
Rivetti, Arturo; Lucino, Cecilia Verónica
Año de publicación
2022
Idioma
español castellano
Tipo de recurso
parte de libro
Estado
versión publicada
Descripción
Los patrones de escurrimiento reales dentro de una bomba centrífuga son tridimensionales, lo cual hace compleja una descripción general de las trayectorias. En cambio, si se asume que el escurrimiento es unidimensional, es sencillo establecer la conexión entre la transferencia de energía y el ’diseño hidráulico’ de impulsores y estatores o pasajes estacionarios de estas máquinas, a los fines de comprender cómo se produce la transformación de energía. De hecho, el análisis unidimensional permite deducir en forma satisfactoria (aunque con limitaciones) las características operativas de una bomba, por ejemplo: potencia y salto respecto al caudal, en las condiciones óptimas o de diseño. En las condiciones de operación que se alejan del punto de diseño, en cambio, el análisis unidimensional solo permite anticipar cualitativamente qué tipo de distorsiones tendrá el escurrimiento en comparación con la situación de diseño. Planteando hipótesis de fluido ideal (es decir: no viscoso, incompresible e irrotacional); considerando que la cantidad de álabes es infinita; y que el escurrimiento es unidimensional, de manera que las trayectorias ’siguen el perfil de los álabes, se logra obtener una descripción muy útil de aspectos relevantes del diseño y funcionamiento de las turbomáquinas en general y las bombas en particular, como, por ejemplo: encontrar una ecuación general que es válida para las turbomáquinas hidráulicas, diferenciar los distintos diseños de acuerdo a la trayectoria del flujo, aplicar la teoría de la similitud a través de las velocidades características y describir estados puntuales de operación (en el punto de diseño y fuera de él). La mayor o menor representatividad de las hipótesis simplificativas depende de qué tan alejadas estén las condiciones reales de funcionamiento respecto de las hipótesis. Por ejemplo, cuanto menor es la cantidad de álabes, más se aleja el comportamiento de la hipótesis de escurrimiento unidimensional, ya que entre un álabe y su consecutivo, las trayectorias no son homogéneas sino que se asimilan a las líneas de corriente que rodean a un cuerpo sumergido en una corriente (teoría de la sustentación). El mecanismo de transferencia del par (o potencia) del eje al fluido que fluye dentro del impulsor es fundamentalmente dinámico; es decir: está relacionado con cambios en la velocidad del fluido. Esto requiere la introducción de la segunda ley de Newton que, planteada en forma de cantidad de movimiento angular, permite explicar de qué manera se le entrega momento cinético al fluido, a través de lo que se conoce como la ecuación fundamental de Euler.
Facultad de Ingeniería
Materia
Ingeniería Hidráulica
Ecuación fundamental de Euler
Escurrimiento
Fluidos
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/153639

id SEDICI_ae5fc03ab52689a249928d98b8b3cb2c
oai_identifier_str oai:sedici.unlp.edu.ar:10915/153639
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Ecuación fundamental de EulerRivetti, ArturoLucino, Cecilia VerónicaIngeniería HidráulicaEcuación fundamental de EulerEscurrimientoFluidosLos patrones de escurrimiento reales dentro de una bomba centrífuga son tridimensionales, lo cual hace compleja una descripción general de las trayectorias. En cambio, si se asume que el escurrimiento es unidimensional, es sencillo establecer la conexión entre la transferencia de energía y el ’diseño hidráulico’ de impulsores y estatores o pasajes estacionarios de estas máquinas, a los fines de comprender cómo se produce la transformación de energía. De hecho, el análisis unidimensional permite deducir en forma satisfactoria (aunque con limitaciones) las características operativas de una bomba, por ejemplo: potencia y salto respecto al caudal, en las condiciones óptimas o de diseño. En las condiciones de operación que se alejan del punto de diseño, en cambio, el análisis unidimensional solo permite anticipar cualitativamente qué tipo de distorsiones tendrá el escurrimiento en comparación con la situación de diseño. Planteando hipótesis de fluido ideal (es decir: no viscoso, incompresible e irrotacional); considerando que la cantidad de álabes es infinita; y que el escurrimiento es unidimensional, de manera que las trayectorias ’siguen el perfil de los álabes, se logra obtener una descripción muy útil de aspectos relevantes del diseño y funcionamiento de las turbomáquinas en general y las bombas en particular, como, por ejemplo: encontrar una ecuación general que es válida para las turbomáquinas hidráulicas, diferenciar los distintos diseños de acuerdo a la trayectoria del flujo, aplicar la teoría de la similitud a través de las velocidades características y describir estados puntuales de operación (en el punto de diseño y fuera de él). La mayor o menor representatividad de las hipótesis simplificativas depende de qué tan alejadas estén las condiciones reales de funcionamiento respecto de las hipótesis. Por ejemplo, cuanto menor es la cantidad de álabes, más se aleja el comportamiento de la hipótesis de escurrimiento unidimensional, ya que entre un álabe y su consecutivo, las trayectorias no son homogéneas sino que se asimilan a las líneas de corriente que rodean a un cuerpo sumergido en una corriente (teoría de la sustentación). El mecanismo de transferencia del par (o potencia) del eje al fluido que fluye dentro del impulsor es fundamentalmente dinámico; es decir: está relacionado con cambios en la velocidad del fluido. Esto requiere la introducción de la segunda ley de Newton que, planteada en forma de cantidad de movimiento angular, permite explicar de qué manera se le entrega momento cinético al fluido, a través de lo que se conoce como la ecuación fundamental de Euler.Facultad de IngenieríaEditorial de la Universidad Nacional de La Plata (EDULP)2022info:eu-repo/semantics/bookPartinfo:eu-repo/semantics/publishedVersionCapitulo de librohttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdf81-90http://sedici.unlp.edu.ar/handle/10915/153639spainfo:eu-repo/semantics/altIdentifier/isbn/978-950-34-2198-7info:eu-repo/semantics/reference/hdl/10915/152118info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:39:44Zoai:sedici.unlp.edu.ar:10915/153639Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:39:44.89SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Ecuación fundamental de Euler
title Ecuación fundamental de Euler
spellingShingle Ecuación fundamental de Euler
Rivetti, Arturo
Ingeniería Hidráulica
Ecuación fundamental de Euler
Escurrimiento
Fluidos
title_short Ecuación fundamental de Euler
title_full Ecuación fundamental de Euler
title_fullStr Ecuación fundamental de Euler
title_full_unstemmed Ecuación fundamental de Euler
title_sort Ecuación fundamental de Euler
dc.creator.none.fl_str_mv Rivetti, Arturo
Lucino, Cecilia Verónica
author Rivetti, Arturo
author_facet Rivetti, Arturo
Lucino, Cecilia Verónica
author_role author
author2 Lucino, Cecilia Verónica
author2_role author
dc.subject.none.fl_str_mv Ingeniería Hidráulica
Ecuación fundamental de Euler
Escurrimiento
Fluidos
topic Ingeniería Hidráulica
Ecuación fundamental de Euler
Escurrimiento
Fluidos
dc.description.none.fl_txt_mv Los patrones de escurrimiento reales dentro de una bomba centrífuga son tridimensionales, lo cual hace compleja una descripción general de las trayectorias. En cambio, si se asume que el escurrimiento es unidimensional, es sencillo establecer la conexión entre la transferencia de energía y el ’diseño hidráulico’ de impulsores y estatores o pasajes estacionarios de estas máquinas, a los fines de comprender cómo se produce la transformación de energía. De hecho, el análisis unidimensional permite deducir en forma satisfactoria (aunque con limitaciones) las características operativas de una bomba, por ejemplo: potencia y salto respecto al caudal, en las condiciones óptimas o de diseño. En las condiciones de operación que se alejan del punto de diseño, en cambio, el análisis unidimensional solo permite anticipar cualitativamente qué tipo de distorsiones tendrá el escurrimiento en comparación con la situación de diseño. Planteando hipótesis de fluido ideal (es decir: no viscoso, incompresible e irrotacional); considerando que la cantidad de álabes es infinita; y que el escurrimiento es unidimensional, de manera que las trayectorias ’siguen el perfil de los álabes, se logra obtener una descripción muy útil de aspectos relevantes del diseño y funcionamiento de las turbomáquinas en general y las bombas en particular, como, por ejemplo: encontrar una ecuación general que es válida para las turbomáquinas hidráulicas, diferenciar los distintos diseños de acuerdo a la trayectoria del flujo, aplicar la teoría de la similitud a través de las velocidades características y describir estados puntuales de operación (en el punto de diseño y fuera de él). La mayor o menor representatividad de las hipótesis simplificativas depende de qué tan alejadas estén las condiciones reales de funcionamiento respecto de las hipótesis. Por ejemplo, cuanto menor es la cantidad de álabes, más se aleja el comportamiento de la hipótesis de escurrimiento unidimensional, ya que entre un álabe y su consecutivo, las trayectorias no son homogéneas sino que se asimilan a las líneas de corriente que rodean a un cuerpo sumergido en una corriente (teoría de la sustentación). El mecanismo de transferencia del par (o potencia) del eje al fluido que fluye dentro del impulsor es fundamentalmente dinámico; es decir: está relacionado con cambios en la velocidad del fluido. Esto requiere la introducción de la segunda ley de Newton que, planteada en forma de cantidad de movimiento angular, permite explicar de qué manera se le entrega momento cinético al fluido, a través de lo que se conoce como la ecuación fundamental de Euler.
Facultad de Ingeniería
description Los patrones de escurrimiento reales dentro de una bomba centrífuga son tridimensionales, lo cual hace compleja una descripción general de las trayectorias. En cambio, si se asume que el escurrimiento es unidimensional, es sencillo establecer la conexión entre la transferencia de energía y el ’diseño hidráulico’ de impulsores y estatores o pasajes estacionarios de estas máquinas, a los fines de comprender cómo se produce la transformación de energía. De hecho, el análisis unidimensional permite deducir en forma satisfactoria (aunque con limitaciones) las características operativas de una bomba, por ejemplo: potencia y salto respecto al caudal, en las condiciones óptimas o de diseño. En las condiciones de operación que se alejan del punto de diseño, en cambio, el análisis unidimensional solo permite anticipar cualitativamente qué tipo de distorsiones tendrá el escurrimiento en comparación con la situación de diseño. Planteando hipótesis de fluido ideal (es decir: no viscoso, incompresible e irrotacional); considerando que la cantidad de álabes es infinita; y que el escurrimiento es unidimensional, de manera que las trayectorias ’siguen el perfil de los álabes, se logra obtener una descripción muy útil de aspectos relevantes del diseño y funcionamiento de las turbomáquinas en general y las bombas en particular, como, por ejemplo: encontrar una ecuación general que es válida para las turbomáquinas hidráulicas, diferenciar los distintos diseños de acuerdo a la trayectoria del flujo, aplicar la teoría de la similitud a través de las velocidades características y describir estados puntuales de operación (en el punto de diseño y fuera de él). La mayor o menor representatividad de las hipótesis simplificativas depende de qué tan alejadas estén las condiciones reales de funcionamiento respecto de las hipótesis. Por ejemplo, cuanto menor es la cantidad de álabes, más se aleja el comportamiento de la hipótesis de escurrimiento unidimensional, ya que entre un álabe y su consecutivo, las trayectorias no son homogéneas sino que se asimilan a las líneas de corriente que rodean a un cuerpo sumergido en una corriente (teoría de la sustentación). El mecanismo de transferencia del par (o potencia) del eje al fluido que fluye dentro del impulsor es fundamentalmente dinámico; es decir: está relacionado con cambios en la velocidad del fluido. Esto requiere la introducción de la segunda ley de Newton que, planteada en forma de cantidad de movimiento angular, permite explicar de qué manera se le entrega momento cinético al fluido, a través de lo que se conoce como la ecuación fundamental de Euler.
publishDate 2022
dc.date.none.fl_str_mv 2022
dc.type.none.fl_str_mv info:eu-repo/semantics/bookPart
info:eu-repo/semantics/publishedVersion
Capitulo de libro
http://purl.org/coar/resource_type/c_3248
info:ar-repo/semantics/parteDeLibro
format bookPart
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/153639
url http://sedici.unlp.edu.ar/handle/10915/153639
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-950-34-2198-7
info:eu-repo/semantics/reference/hdl/10915/152118
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
81-90
dc.publisher.none.fl_str_mv Editorial de la Universidad Nacional de La Plata (EDULP)
publisher.none.fl_str_mv Editorial de la Universidad Nacional de La Plata (EDULP)
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616271211003904
score 13.070432