Evaluation of antioxidant activity of emulsan <i>in vitro</i>

Autores
Castro, Guillermo Raúl; Zuluaga, Natalia; Panilaitis, Bruce; Kaplan, David; Pandey, A.; Larroche, C.; Soccol, C. R.; Dussap, C.-G.
Año de publicación
2009
Idioma
inglés
Tipo de recurso
parte de libro
Estado
versión publicada
Descripción
Oxidative stress has been involved in the development of several pathologies, including vascular damage associated to myocardial and neurological degeneration, such as arteriosclerosis, cerebral ischemia among others; while diabetes, rheumatoid arthritis, inflammation, cancer-initiation, and acceleration of the aging processes are also reported (Coyle and Puttfarcken, 1993; Margail et al., 2005). The toxicity of oxidative stress is believed to be caused by Reactive Oxygen and Nitrogen Species (ROS and RNS, respectively) that can initiate a wide range of oxidative toxic reactions in biological systems (Cuzzocrea et al., 2001). Typical radicals and radical-related toxic molecules produced by ROS are hydrogen peroxide (H2O2), hydroxyl radical (OH⋅), singlet oxygen (1O2), and superoxide anion radical (O2 ⋅-) (Figure 1). The RNS toxic reactants include nitric oxide (NO⋅) and the most powerful oxidant peroxynitrite anion (ONOO-). Biological antioxidant mechanisms described in the literature are many, but with different efficiencies implicating enzymatic as well as non-enzymatic activities. Some of the most relevant antioxidative biocatalysts are superoxide dismutase, and catalase. In addition, other specialized enzymes such as glutathione peroxidase and ã-glutamylcysteine synthetase can be involved in deactivation mechanisms (Figure 1). Well-known non-enzymatic antioxidants are b-carotene, glutathione, melatonin and vitamins C and E, (Valko et al., 2006). However, excessive and persistent formation of free radicals could be main factors of genotoxic effects.
Trabajo presentado en International Conference on New Horizons in Biotechnology (NHBT-2007) (Trivandrum, India, November 26-29, 2007).
Centro de Investigación y Desarrollo en Fermentaciones Industriales
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
Materia
Química
Estrés Oxidativo
Oxígeno reactivo
Especies de Nitrógeno Reactivo
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/123854

id SEDICI_ae4940ff381759da3676715ab1435ad8
oai_identifier_str oai:sedici.unlp.edu.ar:10915/123854
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Evaluation of antioxidant activity of emulsan <i>in vitro</i>Castro, Guillermo RaúlZuluaga, NataliaPanilaitis, BruceKaplan, DavidPandey, A.Larroche, C.Soccol, C. R.Dussap, C.-G.QuímicaEstrés OxidativoOxígeno reactivoEspecies de Nitrógeno ReactivoOxidative stress has been involved in the development of several pathologies, including vascular damage associated to myocardial and neurological degeneration, such as arteriosclerosis, cerebral ischemia among others; while diabetes, rheumatoid arthritis, inflammation, cancer-initiation, and acceleration of the aging processes are also reported (Coyle and Puttfarcken, 1993; Margail et al., 2005). The toxicity of oxidative stress is believed to be caused by Reactive Oxygen and Nitrogen Species (ROS and RNS, respectively) that can initiate a wide range of oxidative toxic reactions in biological systems (Cuzzocrea et al., 2001). Typical radicals and radical-related toxic molecules produced by ROS are hydrogen peroxide (H2O2), hydroxyl radical (OH⋅), singlet oxygen (1O2), and superoxide anion radical (O2 ⋅-) (Figure 1). The RNS toxic reactants include nitric oxide (NO⋅) and the most powerful oxidant peroxynitrite anion (ONOO-). Biological antioxidant mechanisms described in the literature are many, but with different efficiencies implicating enzymatic as well as non-enzymatic activities. Some of the most relevant antioxidative biocatalysts are superoxide dismutase, and catalase. In addition, other specialized enzymes such as glutathione peroxidase and ã-glutamylcysteine synthetase can be involved in deactivation mechanisms (Figure 1). Well-known non-enzymatic antioxidants are b-carotene, glutathione, melatonin and vitamins C and E, (Valko et al., 2006). However, excessive and persistent formation of free radicals could be main factors of genotoxic effects.Trabajo presentado en International Conference on New Horizons in Biotechnology (NHBT-2007) (Trivandrum, India, November 26-29, 2007).Centro de Investigación y Desarrollo en Fermentaciones IndustrialesInstituto de Investigaciones Fisicoquímicas Teóricas y AplicadasAsiatech Publishers2009info:eu-repo/semantics/bookPartinfo:eu-repo/semantics/publishedVersionCapitulo de librohttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdf13-22http://sedici.unlp.edu.ar/handle/10915/123854enginfo:eu-repo/semantics/altIdentifier/isbn/No poseeinfo:eu-repo/semantics/altIdentifier/url/https://www.researchgate.net/publication/232769182_Evaluation_of_antioxidant_activity_of_emulsan_in_vitroinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:10:34Zoai:sedici.unlp.edu.ar:10915/123854Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:10:35.245SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Evaluation of antioxidant activity of emulsan <i>in vitro</i>
title Evaluation of antioxidant activity of emulsan <i>in vitro</i>
spellingShingle Evaluation of antioxidant activity of emulsan <i>in vitro</i>
Castro, Guillermo Raúl
Química
Estrés Oxidativo
Oxígeno reactivo
Especies de Nitrógeno Reactivo
title_short Evaluation of antioxidant activity of emulsan <i>in vitro</i>
title_full Evaluation of antioxidant activity of emulsan <i>in vitro</i>
title_fullStr Evaluation of antioxidant activity of emulsan <i>in vitro</i>
title_full_unstemmed Evaluation of antioxidant activity of emulsan <i>in vitro</i>
title_sort Evaluation of antioxidant activity of emulsan <i>in vitro</i>
dc.creator.none.fl_str_mv Castro, Guillermo Raúl
Zuluaga, Natalia
Panilaitis, Bruce
Kaplan, David
Pandey, A.
Larroche, C.
Soccol, C. R.
Dussap, C.-G.
author Castro, Guillermo Raúl
author_facet Castro, Guillermo Raúl
Zuluaga, Natalia
Panilaitis, Bruce
Kaplan, David
Pandey, A.
Larroche, C.
Soccol, C. R.
Dussap, C.-G.
author_role author
author2 Zuluaga, Natalia
Panilaitis, Bruce
Kaplan, David
Pandey, A.
Larroche, C.
Soccol, C. R.
Dussap, C.-G.
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Química
Estrés Oxidativo
Oxígeno reactivo
Especies de Nitrógeno Reactivo
topic Química
Estrés Oxidativo
Oxígeno reactivo
Especies de Nitrógeno Reactivo
dc.description.none.fl_txt_mv Oxidative stress has been involved in the development of several pathologies, including vascular damage associated to myocardial and neurological degeneration, such as arteriosclerosis, cerebral ischemia among others; while diabetes, rheumatoid arthritis, inflammation, cancer-initiation, and acceleration of the aging processes are also reported (Coyle and Puttfarcken, 1993; Margail et al., 2005). The toxicity of oxidative stress is believed to be caused by Reactive Oxygen and Nitrogen Species (ROS and RNS, respectively) that can initiate a wide range of oxidative toxic reactions in biological systems (Cuzzocrea et al., 2001). Typical radicals and radical-related toxic molecules produced by ROS are hydrogen peroxide (H2O2), hydroxyl radical (OH⋅), singlet oxygen (1O2), and superoxide anion radical (O2 ⋅-) (Figure 1). The RNS toxic reactants include nitric oxide (NO⋅) and the most powerful oxidant peroxynitrite anion (ONOO-). Biological antioxidant mechanisms described in the literature are many, but with different efficiencies implicating enzymatic as well as non-enzymatic activities. Some of the most relevant antioxidative biocatalysts are superoxide dismutase, and catalase. In addition, other specialized enzymes such as glutathione peroxidase and ã-glutamylcysteine synthetase can be involved in deactivation mechanisms (Figure 1). Well-known non-enzymatic antioxidants are b-carotene, glutathione, melatonin and vitamins C and E, (Valko et al., 2006). However, excessive and persistent formation of free radicals could be main factors of genotoxic effects.
Trabajo presentado en International Conference on New Horizons in Biotechnology (NHBT-2007) (Trivandrum, India, November 26-29, 2007).
Centro de Investigación y Desarrollo en Fermentaciones Industriales
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
description Oxidative stress has been involved in the development of several pathologies, including vascular damage associated to myocardial and neurological degeneration, such as arteriosclerosis, cerebral ischemia among others; while diabetes, rheumatoid arthritis, inflammation, cancer-initiation, and acceleration of the aging processes are also reported (Coyle and Puttfarcken, 1993; Margail et al., 2005). The toxicity of oxidative stress is believed to be caused by Reactive Oxygen and Nitrogen Species (ROS and RNS, respectively) that can initiate a wide range of oxidative toxic reactions in biological systems (Cuzzocrea et al., 2001). Typical radicals and radical-related toxic molecules produced by ROS are hydrogen peroxide (H2O2), hydroxyl radical (OH⋅), singlet oxygen (1O2), and superoxide anion radical (O2 ⋅-) (Figure 1). The RNS toxic reactants include nitric oxide (NO⋅) and the most powerful oxidant peroxynitrite anion (ONOO-). Biological antioxidant mechanisms described in the literature are many, but with different efficiencies implicating enzymatic as well as non-enzymatic activities. Some of the most relevant antioxidative biocatalysts are superoxide dismutase, and catalase. In addition, other specialized enzymes such as glutathione peroxidase and ã-glutamylcysteine synthetase can be involved in deactivation mechanisms (Figure 1). Well-known non-enzymatic antioxidants are b-carotene, glutathione, melatonin and vitamins C and E, (Valko et al., 2006). However, excessive and persistent formation of free radicals could be main factors of genotoxic effects.
publishDate 2009
dc.date.none.fl_str_mv 2009
dc.type.none.fl_str_mv info:eu-repo/semantics/bookPart
info:eu-repo/semantics/publishedVersion
Capitulo de libro
http://purl.org/coar/resource_type/c_3248
info:ar-repo/semantics/parteDeLibro
format bookPart
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/123854
url http://sedici.unlp.edu.ar/handle/10915/123854
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/No posee
info:eu-repo/semantics/altIdentifier/url/https://www.researchgate.net/publication/232769182_Evaluation_of_antioxidant_activity_of_emulsan_in_vitro
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
13-22
dc.publisher.none.fl_str_mv Asiatech Publishers
publisher.none.fl_str_mv Asiatech Publishers
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846783445123989504
score 12.982451