Interfaces with a single growth inhomogeneity and anchored boundaries

Autores
Grynberg, Marcelo Daniel
Año de publicación
2003
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The dynamics of a one-dimensional growth model involving attachment and detachment of particles is studied in the presence of a localized growth inhomogeneity along with anchored boundary conditions. At large times, the latter enforce an equilibrium stationary regime which allows for an exact calculation of roughening exponents. The stochastic evolution is related to a spin Hamiltonian whose spectrum gap embodies the dynamic scaling exponent of late stages. For vanishing gaps the interface can exhibit a slow morphological transition followed by a change of scaling regimes which are studied numerically. Instead, a faceting dynamics arises for gapful situations.
Facultad de Ciencias Exactas
Materia
Física
Faceting
Mathematical analysis
Spectrum (functional analysis)
Boundary value problem
Condensed matter physics
Exponent
Growth model
Mathematics
Dynamics (mechanics)
Scaling
Statistical mechanics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/126253

id SEDICI_ae31eaf6defbb22eec37724211003b82
oai_identifier_str oai:sedici.unlp.edu.ar:10915/126253
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Interfaces with a single growth inhomogeneity and anchored boundariesGrynberg, Marcelo DanielFísicaFacetingMathematical analysisSpectrum (functional analysis)Boundary value problemCondensed matter physicsExponentGrowth modelMathematicsDynamics (mechanics)ScalingStatistical mechanicsThe dynamics of a one-dimensional growth model involving attachment and detachment of particles is studied in the presence of a localized growth inhomogeneity along with anchored boundary conditions. At large times, the latter enforce an equilibrium stationary regime which allows for an exact calculation of roughening exponents. The stochastic evolution is related to a spin Hamiltonian whose spectrum gap embodies the dynamic scaling exponent of late stages. For vanishing gaps the interface can exhibit a slow morphological transition followed by a change of scaling regimes which are studied numerically. Instead, a faceting dynamics arises for gapful situations.Facultad de Ciencias Exactas2003-10-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/126253enginfo:eu-repo/semantics/altIdentifier/issn/1063-651Xinfo:eu-repo/semantics/altIdentifier/issn/1095-3787info:eu-repo/semantics/altIdentifier/arxiv/cond-mat/0304454info:eu-repo/semantics/altIdentifier/doi/10.1103/physreve.68.041603info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:30:17Zoai:sedici.unlp.edu.ar:10915/126253Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:30:18.219SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Interfaces with a single growth inhomogeneity and anchored boundaries
title Interfaces with a single growth inhomogeneity and anchored boundaries
spellingShingle Interfaces with a single growth inhomogeneity and anchored boundaries
Grynberg, Marcelo Daniel
Física
Faceting
Mathematical analysis
Spectrum (functional analysis)
Boundary value problem
Condensed matter physics
Exponent
Growth model
Mathematics
Dynamics (mechanics)
Scaling
Statistical mechanics
title_short Interfaces with a single growth inhomogeneity and anchored boundaries
title_full Interfaces with a single growth inhomogeneity and anchored boundaries
title_fullStr Interfaces with a single growth inhomogeneity and anchored boundaries
title_full_unstemmed Interfaces with a single growth inhomogeneity and anchored boundaries
title_sort Interfaces with a single growth inhomogeneity and anchored boundaries
dc.creator.none.fl_str_mv Grynberg, Marcelo Daniel
author Grynberg, Marcelo Daniel
author_facet Grynberg, Marcelo Daniel
author_role author
dc.subject.none.fl_str_mv Física
Faceting
Mathematical analysis
Spectrum (functional analysis)
Boundary value problem
Condensed matter physics
Exponent
Growth model
Mathematics
Dynamics (mechanics)
Scaling
Statistical mechanics
topic Física
Faceting
Mathematical analysis
Spectrum (functional analysis)
Boundary value problem
Condensed matter physics
Exponent
Growth model
Mathematics
Dynamics (mechanics)
Scaling
Statistical mechanics
dc.description.none.fl_txt_mv The dynamics of a one-dimensional growth model involving attachment and detachment of particles is studied in the presence of a localized growth inhomogeneity along with anchored boundary conditions. At large times, the latter enforce an equilibrium stationary regime which allows for an exact calculation of roughening exponents. The stochastic evolution is related to a spin Hamiltonian whose spectrum gap embodies the dynamic scaling exponent of late stages. For vanishing gaps the interface can exhibit a slow morphological transition followed by a change of scaling regimes which are studied numerically. Instead, a faceting dynamics arises for gapful situations.
Facultad de Ciencias Exactas
description The dynamics of a one-dimensional growth model involving attachment and detachment of particles is studied in the presence of a localized growth inhomogeneity along with anchored boundary conditions. At large times, the latter enforce an equilibrium stationary regime which allows for an exact calculation of roughening exponents. The stochastic evolution is related to a spin Hamiltonian whose spectrum gap embodies the dynamic scaling exponent of late stages. For vanishing gaps the interface can exhibit a slow morphological transition followed by a change of scaling regimes which are studied numerically. Instead, a faceting dynamics arises for gapful situations.
publishDate 2003
dc.date.none.fl_str_mv 2003-10-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/126253
url http://sedici.unlp.edu.ar/handle/10915/126253
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1063-651X
info:eu-repo/semantics/altIdentifier/issn/1095-3787
info:eu-repo/semantics/altIdentifier/arxiv/cond-mat/0304454
info:eu-repo/semantics/altIdentifier/doi/10.1103/physreve.68.041603
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616182550757376
score 13.070432