Interfaces with a single growth inhomogeneity and anchored boundaries
- Autores
- Grynberg, Marcelo Daniel
- Año de publicación
- 2003
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The dynamics of a one-dimensional growth model involving attachment and detachment of particles is studied in the presence of a localized growth inhomogeneity along with anchored boundary conditions. At large times, the latter enforce an equilibrium stationary regime which allows for an exact calculation of roughening exponents. The stochastic evolution is related to a spin Hamiltonian whose spectrum gap embodies the dynamic scaling exponent of late stages. For vanishing gaps the interface can exhibit a slow morphological transition followed by a change of scaling regimes which are studied numerically. Instead, a faceting dynamics arises for gapful situations.
Facultad de Ciencias Exactas - Materia
-
Física
Faceting
Mathematical analysis
Spectrum (functional analysis)
Boundary value problem
Condensed matter physics
Exponent
Growth model
Mathematics
Dynamics (mechanics)
Scaling
Statistical mechanics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/126253
Ver los metadatos del registro completo
id |
SEDICI_ae31eaf6defbb22eec37724211003b82 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/126253 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Interfaces with a single growth inhomogeneity and anchored boundariesGrynberg, Marcelo DanielFísicaFacetingMathematical analysisSpectrum (functional analysis)Boundary value problemCondensed matter physicsExponentGrowth modelMathematicsDynamics (mechanics)ScalingStatistical mechanicsThe dynamics of a one-dimensional growth model involving attachment and detachment of particles is studied in the presence of a localized growth inhomogeneity along with anchored boundary conditions. At large times, the latter enforce an equilibrium stationary regime which allows for an exact calculation of roughening exponents. The stochastic evolution is related to a spin Hamiltonian whose spectrum gap embodies the dynamic scaling exponent of late stages. For vanishing gaps the interface can exhibit a slow morphological transition followed by a change of scaling regimes which are studied numerically. Instead, a faceting dynamics arises for gapful situations.Facultad de Ciencias Exactas2003-10-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/126253enginfo:eu-repo/semantics/altIdentifier/issn/1063-651Xinfo:eu-repo/semantics/altIdentifier/issn/1095-3787info:eu-repo/semantics/altIdentifier/arxiv/cond-mat/0304454info:eu-repo/semantics/altIdentifier/doi/10.1103/physreve.68.041603info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:30:17Zoai:sedici.unlp.edu.ar:10915/126253Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:30:18.219SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Interfaces with a single growth inhomogeneity and anchored boundaries |
title |
Interfaces with a single growth inhomogeneity and anchored boundaries |
spellingShingle |
Interfaces with a single growth inhomogeneity and anchored boundaries Grynberg, Marcelo Daniel Física Faceting Mathematical analysis Spectrum (functional analysis) Boundary value problem Condensed matter physics Exponent Growth model Mathematics Dynamics (mechanics) Scaling Statistical mechanics |
title_short |
Interfaces with a single growth inhomogeneity and anchored boundaries |
title_full |
Interfaces with a single growth inhomogeneity and anchored boundaries |
title_fullStr |
Interfaces with a single growth inhomogeneity and anchored boundaries |
title_full_unstemmed |
Interfaces with a single growth inhomogeneity and anchored boundaries |
title_sort |
Interfaces with a single growth inhomogeneity and anchored boundaries |
dc.creator.none.fl_str_mv |
Grynberg, Marcelo Daniel |
author |
Grynberg, Marcelo Daniel |
author_facet |
Grynberg, Marcelo Daniel |
author_role |
author |
dc.subject.none.fl_str_mv |
Física Faceting Mathematical analysis Spectrum (functional analysis) Boundary value problem Condensed matter physics Exponent Growth model Mathematics Dynamics (mechanics) Scaling Statistical mechanics |
topic |
Física Faceting Mathematical analysis Spectrum (functional analysis) Boundary value problem Condensed matter physics Exponent Growth model Mathematics Dynamics (mechanics) Scaling Statistical mechanics |
dc.description.none.fl_txt_mv |
The dynamics of a one-dimensional growth model involving attachment and detachment of particles is studied in the presence of a localized growth inhomogeneity along with anchored boundary conditions. At large times, the latter enforce an equilibrium stationary regime which allows for an exact calculation of roughening exponents. The stochastic evolution is related to a spin Hamiltonian whose spectrum gap embodies the dynamic scaling exponent of late stages. For vanishing gaps the interface can exhibit a slow morphological transition followed by a change of scaling regimes which are studied numerically. Instead, a faceting dynamics arises for gapful situations. Facultad de Ciencias Exactas |
description |
The dynamics of a one-dimensional growth model involving attachment and detachment of particles is studied in the presence of a localized growth inhomogeneity along with anchored boundary conditions. At large times, the latter enforce an equilibrium stationary regime which allows for an exact calculation of roughening exponents. The stochastic evolution is related to a spin Hamiltonian whose spectrum gap embodies the dynamic scaling exponent of late stages. For vanishing gaps the interface can exhibit a slow morphological transition followed by a change of scaling regimes which are studied numerically. Instead, a faceting dynamics arises for gapful situations. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-10-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/126253 |
url |
http://sedici.unlp.edu.ar/handle/10915/126253 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1063-651X info:eu-repo/semantics/altIdentifier/issn/1095-3787 info:eu-repo/semantics/altIdentifier/arxiv/cond-mat/0304454 info:eu-repo/semantics/altIdentifier/doi/10.1103/physreve.68.041603 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616182550757376 |
score |
13.070432 |