Control de flujo sobre la estela cercana de perfiles aerodinámicos mediante la implementación de mini-flaps Gurney

Autores
Camocardi, Mauricio Ezequiel
Año de publicación
2012
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión aceptada
Colaborador/a o director/a de tesis
Colman Lerner, Jorge
Jorge Lassig
Sergio Elaskar
Descripción
La curvatura del borde de fuga y su geometría junto con la influencia sobre la condición de Kutta pueden ser usadas para manipular la sustentación, la resistencia de presiones y la estela de un perfil. Algunos investigadores han analizado varios mecanismos de control pasivo y activo de flujo para incrementar el coeficiente de sustentación, en particular, durante el despegue y aterrizaje de una aeronave. Uno de esos mecanismos es el mini-flap Gurney, el cual consiste en una pequeña placa plana localizada en la superficie inferior del perfil, tan cerca como sea posible del borde de fuga, a lo largo de la envergadura. El objetivo es lograr un desplazamiento del punto de estagnación posterior (condición de Kutta) con un consecuente incremento de circulación y por lo tanto alcanzar una mejora en la sustentación. Uno de los investigadores pioneros en esta área fue Liebeck quien estudió un perfil simétrico tipo Newman con un mini-flap Gurney de altura de 1.25%c donde c es la cuerda del perfil. Él encontró un importante incremento de sustentación asociado al incremento del downwash en la estela cercana. Por otro lado, investigadores realizaron estudios que corroboraron que como otros dispositivos de control de flujo pasivo en el borde de fuga, el mini-flap Gurney aumenta la sustentación, el máximo coeficiente de sustentación y la pendiente de las curvas de CL versus ángulo de ataque, con pequeños cambios en la resistencia y en el ángulo de pérdida. Además, dichos autores encontraron que la mayor altura de tales dispositivos era la altura local de la capa límite en la superficie inferior cerca del borde de fuga. También observaron que la estela cercana era del tipo de una calle de vórtices de von Kármán. El desprendimiento de vórtices incrementa la succión en la superficie superior cerca del borde de fuga y, al mismo tiempo, desacelera el flujo en la superficie inferior con el consecuente incremento de presión en ese lado. Estas diferencias de presión incrementan la circulación global alrededor del perfil y, de esta forma, la sustentación. Un mini-flap Gurney en la superficie inferior cerca del borde de fuga retrasará la pérdida, promoviendo crecimientos del máximo coeficiente de sustentación. Por esa razón algunos diseñadores consideraron el uso de dichos mini-flaps combinados con otros dispositivos de control de flujo para lograr dispositivos de hiper-sustentación en aeronaves menos complejos que los clásicos, sin pérdida de performance durante las fases de despegue y aterrizaje. Si observamos la estela, en particular, la estela cercana, podemos concluir que el crecimiento de la circulación está asociado a un incremento del downwash. Esto requiere mayor asimetría de la estela cercana. Desde nuestro punto de vista, no es realista la concepción de un modelo clásico del flujo de estela, como una calle simétrica similar a la de von Kármán, porque debido a su simetría no habrá un downwash neto asociado con un incremento de sustentación. Más aún, en la región de la estela cercana de un perfil con un mini-flap en la superficie inferior, bajo condiciones de sustentación, la intensidad del vórtice desprendido de la superficie superior será diferente que el que se desprende del de la superficie inferior. Esta asimetría será responsable del downwash neto extra y, por lo tanto, del incremento de sustentación. Los experimentos realizados por autores en trabajos previos, mostraron que en la región de la estela cercana, donde el sistema de vórtices comienza su formación, hay un pico importante de frecuencia en el espectro instantáneo de velocidades, generando la llamada inestabilidad de estela. Existen muchos trabajos relacionados con la implementación de dispositivos de control de flujo en el borde de fuga. Algunos de ellos propusieron el uso de micro-placas capaces de moverse y hacer control de flujo activo sobre rotores de palas de turbinas eólicas. Otros, sugirieron el uso de mini-flaps Gurney activos para disminuir el desarrollo e intensidad de la estela. La motivación del presente trabajo se centró en el análisis del uso de mini-flaps tipo Gurney como elemento activo de control de flujo con la finalidad de modular las capas de corte que generan un crecimiento de la circulación y subsecuentemente un incremento en la sustentación y/o variaciones en los parámetros que gobiernan el comportamiento de las estructuras turbulentas detrás del borde de fuga.
Doctor en Ingeniería
Universidad Nacional de La Plata
Facultad de Ingeniería
Materia
Ingeniería
Ingeniería Aeronáutica
Viento
Anemómetro
Turbulencia
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/18178

id SEDICI_add22c24d087eee1fb5f8cd4c698a9ee
oai_identifier_str oai:sedici.unlp.edu.ar:10915/18178
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Control de flujo sobre la estela cercana de perfiles aerodinámicos mediante la implementación de mini-flaps GurneyCamocardi, Mauricio EzequielIngenieríaIngeniería AeronáuticaVientoAnemómetroTurbulenciaLa curvatura del borde de fuga y su geometría junto con la influencia sobre la condición de Kutta pueden ser usadas para manipular la sustentación, la resistencia de presiones y la estela de un perfil. Algunos investigadores han analizado varios mecanismos de control pasivo y activo de flujo para incrementar el coeficiente de sustentación, en particular, durante el despegue y aterrizaje de una aeronave. Uno de esos mecanismos es el mini-flap Gurney, el cual consiste en una pequeña placa plana localizada en la superficie inferior del perfil, tan cerca como sea posible del borde de fuga, a lo largo de la envergadura. El objetivo es lograr un desplazamiento del punto de estagnación posterior (condición de Kutta) con un consecuente incremento de circulación y por lo tanto alcanzar una mejora en la sustentación. Uno de los investigadores pioneros en esta área fue Liebeck quien estudió un perfil simétrico tipo Newman con un mini-flap Gurney de altura de 1.25%c donde c es la cuerda del perfil. Él encontró un importante incremento de sustentación asociado al incremento del downwash en la estela cercana. Por otro lado, investigadores realizaron estudios que corroboraron que como otros dispositivos de control de flujo pasivo en el borde de fuga, el mini-flap Gurney aumenta la sustentación, el máximo coeficiente de sustentación y la pendiente de las curvas de CL versus ángulo de ataque, con pequeños cambios en la resistencia y en el ángulo de pérdida. Además, dichos autores encontraron que la mayor altura de tales dispositivos era la altura local de la capa límite en la superficie inferior cerca del borde de fuga. También observaron que la estela cercana era del tipo de una calle de vórtices de von Kármán. El desprendimiento de vórtices incrementa la succión en la superficie superior cerca del borde de fuga y, al mismo tiempo, desacelera el flujo en la superficie inferior con el consecuente incremento de presión en ese lado. Estas diferencias de presión incrementan la circulación global alrededor del perfil y, de esta forma, la sustentación. Un mini-flap Gurney en la superficie inferior cerca del borde de fuga retrasará la pérdida, promoviendo crecimientos del máximo coeficiente de sustentación. Por esa razón algunos diseñadores consideraron el uso de dichos mini-flaps combinados con otros dispositivos de control de flujo para lograr dispositivos de hiper-sustentación en aeronaves menos complejos que los clásicos, sin pérdida de performance durante las fases de despegue y aterrizaje. Si observamos la estela, en particular, la estela cercana, podemos concluir que el crecimiento de la circulación está asociado a un incremento del downwash. Esto requiere mayor asimetría de la estela cercana. Desde nuestro punto de vista, no es realista la concepción de un modelo clásico del flujo de estela, como una calle simétrica similar a la de von Kármán, porque debido a su simetría no habrá un downwash neto asociado con un incremento de sustentación. Más aún, en la región de la estela cercana de un perfil con un mini-flap en la superficie inferior, bajo condiciones de sustentación, la intensidad del vórtice desprendido de la superficie superior será diferente que el que se desprende del de la superficie inferior. Esta asimetría será responsable del downwash neto extra y, por lo tanto, del incremento de sustentación. Los experimentos realizados por autores en trabajos previos, mostraron que en la región de la estela cercana, donde el sistema de vórtices comienza su formación, hay un pico importante de frecuencia en el espectro instantáneo de velocidades, generando la llamada inestabilidad de estela. Existen muchos trabajos relacionados con la implementación de dispositivos de control de flujo en el borde de fuga. Algunos de ellos propusieron el uso de micro-placas capaces de moverse y hacer control de flujo activo sobre rotores de palas de turbinas eólicas. Otros, sugirieron el uso de mini-flaps Gurney activos para disminuir el desarrollo e intensidad de la estela. La motivación del presente trabajo se centró en el análisis del uso de mini-flaps tipo Gurney como elemento activo de control de flujo con la finalidad de modular las capas de corte que generan un crecimiento de la circulación y subsecuentemente un incremento en la sustentación y/o variaciones en los parámetros que gobiernan el comportamiento de las estructuras turbulentas detrás del borde de fuga.Doctor en IngenieríaUniversidad Nacional de La PlataFacultad de IngenieríaColman Lerner, JorgeJorge LassigSergio Elaskar2012-04-26info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionTesis de doctoradohttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/18178https://doi.org/10.35537/10915/18178spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:26:18Zoai:sedici.unlp.edu.ar:10915/18178Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:26:19.525SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Control de flujo sobre la estela cercana de perfiles aerodinámicos mediante la implementación de mini-flaps Gurney
title Control de flujo sobre la estela cercana de perfiles aerodinámicos mediante la implementación de mini-flaps Gurney
spellingShingle Control de flujo sobre la estela cercana de perfiles aerodinámicos mediante la implementación de mini-flaps Gurney
Camocardi, Mauricio Ezequiel
Ingeniería
Ingeniería Aeronáutica
Viento
Anemómetro
Turbulencia
title_short Control de flujo sobre la estela cercana de perfiles aerodinámicos mediante la implementación de mini-flaps Gurney
title_full Control de flujo sobre la estela cercana de perfiles aerodinámicos mediante la implementación de mini-flaps Gurney
title_fullStr Control de flujo sobre la estela cercana de perfiles aerodinámicos mediante la implementación de mini-flaps Gurney
title_full_unstemmed Control de flujo sobre la estela cercana de perfiles aerodinámicos mediante la implementación de mini-flaps Gurney
title_sort Control de flujo sobre la estela cercana de perfiles aerodinámicos mediante la implementación de mini-flaps Gurney
dc.creator.none.fl_str_mv Camocardi, Mauricio Ezequiel
author Camocardi, Mauricio Ezequiel
author_facet Camocardi, Mauricio Ezequiel
author_role author
dc.contributor.none.fl_str_mv Colman Lerner, Jorge
Jorge Lassig
Sergio Elaskar
dc.subject.none.fl_str_mv Ingeniería
Ingeniería Aeronáutica
Viento
Anemómetro
Turbulencia
topic Ingeniería
Ingeniería Aeronáutica
Viento
Anemómetro
Turbulencia
dc.description.none.fl_txt_mv La curvatura del borde de fuga y su geometría junto con la influencia sobre la condición de Kutta pueden ser usadas para manipular la sustentación, la resistencia de presiones y la estela de un perfil. Algunos investigadores han analizado varios mecanismos de control pasivo y activo de flujo para incrementar el coeficiente de sustentación, en particular, durante el despegue y aterrizaje de una aeronave. Uno de esos mecanismos es el mini-flap Gurney, el cual consiste en una pequeña placa plana localizada en la superficie inferior del perfil, tan cerca como sea posible del borde de fuga, a lo largo de la envergadura. El objetivo es lograr un desplazamiento del punto de estagnación posterior (condición de Kutta) con un consecuente incremento de circulación y por lo tanto alcanzar una mejora en la sustentación. Uno de los investigadores pioneros en esta área fue Liebeck quien estudió un perfil simétrico tipo Newman con un mini-flap Gurney de altura de 1.25%c donde c es la cuerda del perfil. Él encontró un importante incremento de sustentación asociado al incremento del downwash en la estela cercana. Por otro lado, investigadores realizaron estudios que corroboraron que como otros dispositivos de control de flujo pasivo en el borde de fuga, el mini-flap Gurney aumenta la sustentación, el máximo coeficiente de sustentación y la pendiente de las curvas de CL versus ángulo de ataque, con pequeños cambios en la resistencia y en el ángulo de pérdida. Además, dichos autores encontraron que la mayor altura de tales dispositivos era la altura local de la capa límite en la superficie inferior cerca del borde de fuga. También observaron que la estela cercana era del tipo de una calle de vórtices de von Kármán. El desprendimiento de vórtices incrementa la succión en la superficie superior cerca del borde de fuga y, al mismo tiempo, desacelera el flujo en la superficie inferior con el consecuente incremento de presión en ese lado. Estas diferencias de presión incrementan la circulación global alrededor del perfil y, de esta forma, la sustentación. Un mini-flap Gurney en la superficie inferior cerca del borde de fuga retrasará la pérdida, promoviendo crecimientos del máximo coeficiente de sustentación. Por esa razón algunos diseñadores consideraron el uso de dichos mini-flaps combinados con otros dispositivos de control de flujo para lograr dispositivos de hiper-sustentación en aeronaves menos complejos que los clásicos, sin pérdida de performance durante las fases de despegue y aterrizaje. Si observamos la estela, en particular, la estela cercana, podemos concluir que el crecimiento de la circulación está asociado a un incremento del downwash. Esto requiere mayor asimetría de la estela cercana. Desde nuestro punto de vista, no es realista la concepción de un modelo clásico del flujo de estela, como una calle simétrica similar a la de von Kármán, porque debido a su simetría no habrá un downwash neto asociado con un incremento de sustentación. Más aún, en la región de la estela cercana de un perfil con un mini-flap en la superficie inferior, bajo condiciones de sustentación, la intensidad del vórtice desprendido de la superficie superior será diferente que el que se desprende del de la superficie inferior. Esta asimetría será responsable del downwash neto extra y, por lo tanto, del incremento de sustentación. Los experimentos realizados por autores en trabajos previos, mostraron que en la región de la estela cercana, donde el sistema de vórtices comienza su formación, hay un pico importante de frecuencia en el espectro instantáneo de velocidades, generando la llamada inestabilidad de estela. Existen muchos trabajos relacionados con la implementación de dispositivos de control de flujo en el borde de fuga. Algunos de ellos propusieron el uso de micro-placas capaces de moverse y hacer control de flujo activo sobre rotores de palas de turbinas eólicas. Otros, sugirieron el uso de mini-flaps Gurney activos para disminuir el desarrollo e intensidad de la estela. La motivación del presente trabajo se centró en el análisis del uso de mini-flaps tipo Gurney como elemento activo de control de flujo con la finalidad de modular las capas de corte que generan un crecimiento de la circulación y subsecuentemente un incremento en la sustentación y/o variaciones en los parámetros que gobiernan el comportamiento de las estructuras turbulentas detrás del borde de fuga.
Doctor en Ingeniería
Universidad Nacional de La Plata
Facultad de Ingeniería
description La curvatura del borde de fuga y su geometría junto con la influencia sobre la condición de Kutta pueden ser usadas para manipular la sustentación, la resistencia de presiones y la estela de un perfil. Algunos investigadores han analizado varios mecanismos de control pasivo y activo de flujo para incrementar el coeficiente de sustentación, en particular, durante el despegue y aterrizaje de una aeronave. Uno de esos mecanismos es el mini-flap Gurney, el cual consiste en una pequeña placa plana localizada en la superficie inferior del perfil, tan cerca como sea posible del borde de fuga, a lo largo de la envergadura. El objetivo es lograr un desplazamiento del punto de estagnación posterior (condición de Kutta) con un consecuente incremento de circulación y por lo tanto alcanzar una mejora en la sustentación. Uno de los investigadores pioneros en esta área fue Liebeck quien estudió un perfil simétrico tipo Newman con un mini-flap Gurney de altura de 1.25%c donde c es la cuerda del perfil. Él encontró un importante incremento de sustentación asociado al incremento del downwash en la estela cercana. Por otro lado, investigadores realizaron estudios que corroboraron que como otros dispositivos de control de flujo pasivo en el borde de fuga, el mini-flap Gurney aumenta la sustentación, el máximo coeficiente de sustentación y la pendiente de las curvas de CL versus ángulo de ataque, con pequeños cambios en la resistencia y en el ángulo de pérdida. Además, dichos autores encontraron que la mayor altura de tales dispositivos era la altura local de la capa límite en la superficie inferior cerca del borde de fuga. También observaron que la estela cercana era del tipo de una calle de vórtices de von Kármán. El desprendimiento de vórtices incrementa la succión en la superficie superior cerca del borde de fuga y, al mismo tiempo, desacelera el flujo en la superficie inferior con el consecuente incremento de presión en ese lado. Estas diferencias de presión incrementan la circulación global alrededor del perfil y, de esta forma, la sustentación. Un mini-flap Gurney en la superficie inferior cerca del borde de fuga retrasará la pérdida, promoviendo crecimientos del máximo coeficiente de sustentación. Por esa razón algunos diseñadores consideraron el uso de dichos mini-flaps combinados con otros dispositivos de control de flujo para lograr dispositivos de hiper-sustentación en aeronaves menos complejos que los clásicos, sin pérdida de performance durante las fases de despegue y aterrizaje. Si observamos la estela, en particular, la estela cercana, podemos concluir que el crecimiento de la circulación está asociado a un incremento del downwash. Esto requiere mayor asimetría de la estela cercana. Desde nuestro punto de vista, no es realista la concepción de un modelo clásico del flujo de estela, como una calle simétrica similar a la de von Kármán, porque debido a su simetría no habrá un downwash neto asociado con un incremento de sustentación. Más aún, en la región de la estela cercana de un perfil con un mini-flap en la superficie inferior, bajo condiciones de sustentación, la intensidad del vórtice desprendido de la superficie superior será diferente que el que se desprende del de la superficie inferior. Esta asimetría será responsable del downwash neto extra y, por lo tanto, del incremento de sustentación. Los experimentos realizados por autores en trabajos previos, mostraron que en la región de la estela cercana, donde el sistema de vórtices comienza su formación, hay un pico importante de frecuencia en el espectro instantáneo de velocidades, generando la llamada inestabilidad de estela. Existen muchos trabajos relacionados con la implementación de dispositivos de control de flujo en el borde de fuga. Algunos de ellos propusieron el uso de micro-placas capaces de moverse y hacer control de flujo activo sobre rotores de palas de turbinas eólicas. Otros, sugirieron el uso de mini-flaps Gurney activos para disminuir el desarrollo e intensidad de la estela. La motivación del presente trabajo se centró en el análisis del uso de mini-flaps tipo Gurney como elemento activo de control de flujo con la finalidad de modular las capas de corte que generan un crecimiento de la circulación y subsecuentemente un incremento en la sustentación y/o variaciones en los parámetros que gobiernan el comportamiento de las estructuras turbulentas detrás del borde de fuga.
publishDate 2012
dc.date.none.fl_str_mv 2012-04-26
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/acceptedVersion
Tesis de doctorado
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/18178
https://doi.org/10.35537/10915/18178
url http://sedici.unlp.edu.ar/handle/10915/18178
https://doi.org/10.35537/10915/18178
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260095537250304
score 13.13397