Generalized conditional entropy in bipartite quantum systems

Autores
Gigena, Nicolás Alejandro; Rossignoli, Raúl
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We analyze, for a general concave entropic form, the associated conditional entropy of a quantum system A+B, obtained as a result of a local measurement on one of the systems (B). This quantity is a measure of the average mixedness of A after such measurement, and its minimum over all local measurements is shown to be the associated entanglement of formation between A and a purifying third system C. In the case of the von Neumann entropy, this minimum determines also the quantum discord. For classically correlated states and mixtures of a pure state with the maximally mixed state, we show that the minimizing measurement can be determined analytically and is universal, i.e., the same for all concave forms. While these properties no longer hold for general states, we also show that in the special case of the linear entropy, an explicit expression for the associated conditional entropy can be obtained, whose minimum among projective measurements in a general qudit-qubit state can be determined analytically, in terms of the largest eigenvalue of a simple 3 × 3 correlation matrix. Such minimum determines the maximum conditional purity of A, and the associated minimizing measurement is shown to be also universal in the vicinity of maximal mixedness. Results for X states, including typical reduced states of spin pairs in XY chains at weak and strong transverse fields, are also provided and indicate that the measurements minimizing the von Neumann and linear conditional entropies are typically coincident in these states, being determined essentially by the main correlation. They can differ, however, substantially from that minimizing the geometric discord.
Facultad de Ciencias Exactas
Materia
Ciencias Exactas
Física
teoría cuántica
entropía
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/77398

id SEDICI_abe9fa8e67335e7ddeec37b1f710b854
oai_identifier_str oai:sedici.unlp.edu.ar:10915/77398
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Generalized conditional entropy in bipartite quantum systemsGigena, Nicolás AlejandroRossignoli, RaúlCiencias ExactasFísicateoría cuánticaentropíaWe analyze, for a general concave entropic form, the associated conditional entropy of a quantum system A+B, obtained as a result of a local measurement on one of the systems (B). This quantity is a measure of the average mixedness of A after such measurement, and its minimum over all local measurements is shown to be the associated entanglement of formation between A and a purifying third system C. In the case of the von Neumann entropy, this minimum determines also the quantum discord. For classically correlated states and mixtures of a pure state with the maximally mixed state, we show that the minimizing measurement can be determined analytically and is universal, i.e., the same for all concave forms. While these properties no longer hold for general states, we also show that in the special case of the linear entropy, an explicit expression for the associated conditional entropy can be obtained, whose minimum among projective measurements in a general qudit-qubit state can be determined analytically, in terms of the largest eigenvalue of a simple 3 × 3 correlation matrix. Such minimum determines the maximum conditional purity of A, and the associated minimizing measurement is shown to be also universal in the vicinity of maximal mixedness. Results for X states, including typical reduced states of spin pairs in XY chains at weak and strong transverse fields, are also provided and indicate that the measurements minimizing the von Neumann and linear conditional entropies are typically coincident in these states, being determined essentially by the main correlation. They can differ, however, substantially from that minimizing the geometric discord.Facultad de Ciencias Exactas2013info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/77398enginfo:eu-repo/semantics/altIdentifier/hdl/11746/4200info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/47/1/015302info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-17T09:56:35Zoai:sedici.unlp.edu.ar:10915/77398Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-17 09:56:35.307SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Generalized conditional entropy in bipartite quantum systems
title Generalized conditional entropy in bipartite quantum systems
spellingShingle Generalized conditional entropy in bipartite quantum systems
Gigena, Nicolás Alejandro
Ciencias Exactas
Física
teoría cuántica
entropía
title_short Generalized conditional entropy in bipartite quantum systems
title_full Generalized conditional entropy in bipartite quantum systems
title_fullStr Generalized conditional entropy in bipartite quantum systems
title_full_unstemmed Generalized conditional entropy in bipartite quantum systems
title_sort Generalized conditional entropy in bipartite quantum systems
dc.creator.none.fl_str_mv Gigena, Nicolás Alejandro
Rossignoli, Raúl
author Gigena, Nicolás Alejandro
author_facet Gigena, Nicolás Alejandro
Rossignoli, Raúl
author_role author
author2 Rossignoli, Raúl
author2_role author
dc.subject.none.fl_str_mv Ciencias Exactas
Física
teoría cuántica
entropía
topic Ciencias Exactas
Física
teoría cuántica
entropía
dc.description.none.fl_txt_mv We analyze, for a general concave entropic form, the associated conditional entropy of a quantum system A+B, obtained as a result of a local measurement on one of the systems (B). This quantity is a measure of the average mixedness of A after such measurement, and its minimum over all local measurements is shown to be the associated entanglement of formation between A and a purifying third system C. In the case of the von Neumann entropy, this minimum determines also the quantum discord. For classically correlated states and mixtures of a pure state with the maximally mixed state, we show that the minimizing measurement can be determined analytically and is universal, i.e., the same for all concave forms. While these properties no longer hold for general states, we also show that in the special case of the linear entropy, an explicit expression for the associated conditional entropy can be obtained, whose minimum among projective measurements in a general qudit-qubit state can be determined analytically, in terms of the largest eigenvalue of a simple 3 × 3 correlation matrix. Such minimum determines the maximum conditional purity of A, and the associated minimizing measurement is shown to be also universal in the vicinity of maximal mixedness. Results for X states, including typical reduced states of spin pairs in XY chains at weak and strong transverse fields, are also provided and indicate that the measurements minimizing the von Neumann and linear conditional entropies are typically coincident in these states, being determined essentially by the main correlation. They can differ, however, substantially from that minimizing the geometric discord.
Facultad de Ciencias Exactas
description We analyze, for a general concave entropic form, the associated conditional entropy of a quantum system A+B, obtained as a result of a local measurement on one of the systems (B). This quantity is a measure of the average mixedness of A after such measurement, and its minimum over all local measurements is shown to be the associated entanglement of formation between A and a purifying third system C. In the case of the von Neumann entropy, this minimum determines also the quantum discord. For classically correlated states and mixtures of a pure state with the maximally mixed state, we show that the minimizing measurement can be determined analytically and is universal, i.e., the same for all concave forms. While these properties no longer hold for general states, we also show that in the special case of the linear entropy, an explicit expression for the associated conditional entropy can be obtained, whose minimum among projective measurements in a general qudit-qubit state can be determined analytically, in terms of the largest eigenvalue of a simple 3 × 3 correlation matrix. Such minimum determines the maximum conditional purity of A, and the associated minimizing measurement is shown to be also universal in the vicinity of maximal mixedness. Results for X states, including typical reduced states of spin pairs in XY chains at weak and strong transverse fields, are also provided and indicate that the measurements minimizing the von Neumann and linear conditional entropies are typically coincident in these states, being determined essentially by the main correlation. They can differ, however, substantially from that minimizing the geometric discord.
publishDate 2013
dc.date.none.fl_str_mv 2013
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/77398
url http://sedici.unlp.edu.ar/handle/10915/77398
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/hdl/11746/4200
info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/47/1/015302
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1843532417098317824
score 13.000565