Anisotropic Unruh temperatures
- Autores
- Arias, Raúl Eduardo; Casini, Horacio Germán; Huerta, Marina; Pontello, Diego Esteban
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The relative entropy between very high-energy localized excitations and the vacuum, where both states are reduced to a spatial region, gives place to a precise definition of a local temperature produced by vacuum entanglement across the boundary. This generalizes the Unruh temperature of the Rindler wedge to arbitrary regions. The local temperatures can be read off from the short distance leading have a universal geometric expression that follows by solving a particular eikonal type equation in Euclidean space. This equation generalizes to any dimension the holomorphic property that holds in two dimensions. For regions of arbitrary shapes the local temperatures at a point are direction dependent. We compute their explicit expression for the geometry of a wall or strip.
Facultad de Ciencias Exactas
Instituto de Física La Plata - Materia
-
Ciencias Exactas
Física
Entropy
Entanglement
Unruh - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/97094
Ver los metadatos del registro completo
id |
SEDICI_ab2fdd52a54f884724244879c8348d16 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/97094 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Anisotropic Unruh temperaturesArias, Raúl EduardoCasini, Horacio GermánHuerta, MarinaPontello, Diego EstebanCiencias ExactasFísicaEntropyEntanglementUnruhThe relative entropy between very high-energy localized excitations and the vacuum, where both states are reduced to a spatial region, gives place to a precise definition of a local temperature produced by vacuum entanglement across the boundary. This generalizes the Unruh temperature of the Rindler wedge to arbitrary regions. The local temperatures can be read off from the short distance leading have a universal geometric expression that follows by solving a particular eikonal type equation in Euclidean space. This equation generalizes to any dimension the holomorphic property that holds in two dimensions. For regions of arbitrary shapes the local temperatures at a point are direction dependent. We compute their explicit expression for the geometry of a wall or strip.Facultad de Ciencias ExactasInstituto de Física La Plata2017-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/97094enginfo:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/50046info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.96.105019info:eu-repo/semantics/altIdentifier/issn/2470-0029info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.96.105019info:eu-repo/semantics/altIdentifier/hdl/11336/50046info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:20:06Zoai:sedici.unlp.edu.ar:10915/97094Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:20:06.888SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Anisotropic Unruh temperatures |
title |
Anisotropic Unruh temperatures |
spellingShingle |
Anisotropic Unruh temperatures Arias, Raúl Eduardo Ciencias Exactas Física Entropy Entanglement Unruh |
title_short |
Anisotropic Unruh temperatures |
title_full |
Anisotropic Unruh temperatures |
title_fullStr |
Anisotropic Unruh temperatures |
title_full_unstemmed |
Anisotropic Unruh temperatures |
title_sort |
Anisotropic Unruh temperatures |
dc.creator.none.fl_str_mv |
Arias, Raúl Eduardo Casini, Horacio Germán Huerta, Marina Pontello, Diego Esteban |
author |
Arias, Raúl Eduardo |
author_facet |
Arias, Raúl Eduardo Casini, Horacio Germán Huerta, Marina Pontello, Diego Esteban |
author_role |
author |
author2 |
Casini, Horacio Germán Huerta, Marina Pontello, Diego Esteban |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Exactas Física Entropy Entanglement Unruh |
topic |
Ciencias Exactas Física Entropy Entanglement Unruh |
dc.description.none.fl_txt_mv |
The relative entropy between very high-energy localized excitations and the vacuum, where both states are reduced to a spatial region, gives place to a precise definition of a local temperature produced by vacuum entanglement across the boundary. This generalizes the Unruh temperature of the Rindler wedge to arbitrary regions. The local temperatures can be read off from the short distance leading have a universal geometric expression that follows by solving a particular eikonal type equation in Euclidean space. This equation generalizes to any dimension the holomorphic property that holds in two dimensions. For regions of arbitrary shapes the local temperatures at a point are direction dependent. We compute their explicit expression for the geometry of a wall or strip. Facultad de Ciencias Exactas Instituto de Física La Plata |
description |
The relative entropy between very high-energy localized excitations and the vacuum, where both states are reduced to a spatial region, gives place to a precise definition of a local temperature produced by vacuum entanglement across the boundary. This generalizes the Unruh temperature of the Rindler wedge to arbitrary regions. The local temperatures can be read off from the short distance leading have a universal geometric expression that follows by solving a particular eikonal type equation in Euclidean space. This equation generalizes to any dimension the holomorphic property that holds in two dimensions. For regions of arbitrary shapes the local temperatures at a point are direction dependent. We compute their explicit expression for the geometry of a wall or strip. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/97094 |
url |
http://sedici.unlp.edu.ar/handle/10915/97094 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/50046 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.96.105019 info:eu-repo/semantics/altIdentifier/issn/2470-0029 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.96.105019 info:eu-repo/semantics/altIdentifier/hdl/11336/50046 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616075454447616 |
score |
13.070432 |