Anisotropic Unruh temperatures

Autores
Arias, Raúl Eduardo; Casini, Horacio Germán; Huerta, Marina; Pontello, Diego Esteban
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The relative entropy between very high-energy localized excitations and the vacuum, where both states are reduced to a spatial region, gives place to a precise definition of a local temperature produced by vacuum entanglement across the boundary. This generalizes the Unruh temperature of the Rindler wedge to arbitrary regions. The local temperatures can be read off from the short distance leading have a universal geometric expression that follows by solving a particular eikonal type equation in Euclidean space. This equation generalizes to any dimension the holomorphic property that holds in two dimensions. For regions of arbitrary shapes the local temperatures at a point are direction dependent. We compute their explicit expression for the geometry of a wall or strip.
Facultad de Ciencias Exactas
Instituto de Física La Plata
Materia
Ciencias Exactas
Física
Entropy
Entanglement
Unruh
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/97094

id SEDICI_ab2fdd52a54f884724244879c8348d16
oai_identifier_str oai:sedici.unlp.edu.ar:10915/97094
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Anisotropic Unruh temperaturesArias, Raúl EduardoCasini, Horacio GermánHuerta, MarinaPontello, Diego EstebanCiencias ExactasFísicaEntropyEntanglementUnruhThe relative entropy between very high-energy localized excitations and the vacuum, where both states are reduced to a spatial region, gives place to a precise definition of a local temperature produced by vacuum entanglement across the boundary. This generalizes the Unruh temperature of the Rindler wedge to arbitrary regions. The local temperatures can be read off from the short distance leading have a universal geometric expression that follows by solving a particular eikonal type equation in Euclidean space. This equation generalizes to any dimension the holomorphic property that holds in two dimensions. For regions of arbitrary shapes the local temperatures at a point are direction dependent. We compute their explicit expression for the geometry of a wall or strip.Facultad de Ciencias ExactasInstituto de Física La Plata2017-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/97094enginfo:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/50046info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.96.105019info:eu-repo/semantics/altIdentifier/issn/2470-0029info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.96.105019info:eu-repo/semantics/altIdentifier/hdl/11336/50046info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:20:06Zoai:sedici.unlp.edu.ar:10915/97094Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:20:06.888SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Anisotropic Unruh temperatures
title Anisotropic Unruh temperatures
spellingShingle Anisotropic Unruh temperatures
Arias, Raúl Eduardo
Ciencias Exactas
Física
Entropy
Entanglement
Unruh
title_short Anisotropic Unruh temperatures
title_full Anisotropic Unruh temperatures
title_fullStr Anisotropic Unruh temperatures
title_full_unstemmed Anisotropic Unruh temperatures
title_sort Anisotropic Unruh temperatures
dc.creator.none.fl_str_mv Arias, Raúl Eduardo
Casini, Horacio Germán
Huerta, Marina
Pontello, Diego Esteban
author Arias, Raúl Eduardo
author_facet Arias, Raúl Eduardo
Casini, Horacio Germán
Huerta, Marina
Pontello, Diego Esteban
author_role author
author2 Casini, Horacio Germán
Huerta, Marina
Pontello, Diego Esteban
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Exactas
Física
Entropy
Entanglement
Unruh
topic Ciencias Exactas
Física
Entropy
Entanglement
Unruh
dc.description.none.fl_txt_mv The relative entropy between very high-energy localized excitations and the vacuum, where both states are reduced to a spatial region, gives place to a precise definition of a local temperature produced by vacuum entanglement across the boundary. This generalizes the Unruh temperature of the Rindler wedge to arbitrary regions. The local temperatures can be read off from the short distance leading have a universal geometric expression that follows by solving a particular eikonal type equation in Euclidean space. This equation generalizes to any dimension the holomorphic property that holds in two dimensions. For regions of arbitrary shapes the local temperatures at a point are direction dependent. We compute their explicit expression for the geometry of a wall or strip.
Facultad de Ciencias Exactas
Instituto de Física La Plata
description The relative entropy between very high-energy localized excitations and the vacuum, where both states are reduced to a spatial region, gives place to a precise definition of a local temperature produced by vacuum entanglement across the boundary. This generalizes the Unruh temperature of the Rindler wedge to arbitrary regions. The local temperatures can be read off from the short distance leading have a universal geometric expression that follows by solving a particular eikonal type equation in Euclidean space. This equation generalizes to any dimension the holomorphic property that holds in two dimensions. For regions of arbitrary shapes the local temperatures at a point are direction dependent. We compute their explicit expression for the geometry of a wall or strip.
publishDate 2017
dc.date.none.fl_str_mv 2017-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/97094
url http://sedici.unlp.edu.ar/handle/10915/97094
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/50046
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.96.105019
info:eu-repo/semantics/altIdentifier/issn/2470-0029
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.96.105019
info:eu-repo/semantics/altIdentifier/hdl/11336/50046
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616075454447616
score 13.070432