Rényi entropies in the n →0 limit and entanglement temperatures
- Autores
- Agón, Cesar A.; Casini, Horacio German; Martinez, Pedro Jorge
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Entanglement temperatures (ET) are a generalization of Unruh temperatures valid for states reduced to any region of space. They encode in a thermal fashion the high energy behavior of the state around a point. These temperatures are determined by an eikonal equation in Euclidean space. We show that the real-time continuation of these equations implies ballistic propagation. For theories with a free UV fixed point, the ET determines the state at a large modular temperature. In particular, we show that the n→0 limit of Rényi entropies Sn, can be computed from the ET. This establishes a formula for these Rényi entropies for any region in terms of solutions of the eikonal equations. In the n→0 limit, the relevant high-temperature state propagation is determined by a free relativistic Boltzmann equation, with an infinite tower of conserved currents. For the special case of states and regions with a conformal Killing symmetry, these equations coincide with the ones of a perfect fluid.
Fil: Agón, Cesar A.. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Martinez, Pedro Jorge. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina - Materia
-
Information Theory
Unruh Effect
Renyi Entropy
Quantum Field Theory - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/233658
Ver los metadatos del registro completo
id |
CONICETDig_7a917049ea0cf29cf0683ce7257add2c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/233658 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Rényi entropies in the n →0 limit and entanglement temperaturesAgón, Cesar A.Casini, Horacio GermanMartinez, Pedro JorgeInformation TheoryUnruh EffectRenyi EntropyQuantum Field Theoryhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Entanglement temperatures (ET) are a generalization of Unruh temperatures valid for states reduced to any region of space. They encode in a thermal fashion the high energy behavior of the state around a point. These temperatures are determined by an eikonal equation in Euclidean space. We show that the real-time continuation of these equations implies ballistic propagation. For theories with a free UV fixed point, the ET determines the state at a large modular temperature. In particular, we show that the n→0 limit of Rényi entropies Sn, can be computed from the ET. This establishes a formula for these Rényi entropies for any region in terms of solutions of the eikonal equations. In the n→0 limit, the relevant high-temperature state propagation is determined by a free relativistic Boltzmann equation, with an infinite tower of conserved currents. For the special case of states and regions with a conformal Killing symmetry, these equations coincide with the ones of a perfect fluid.Fil: Agón, Cesar A.. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Martinez, Pedro Jorge. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaAmerican Physical Society2023-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/233658Agón, Cesar A.; Casini, Horacio German; Martinez, Pedro Jorge; Rényi entropies in the n →0 limit and entanglement temperatures; American Physical Society; Physical Review D; 108; 10; 11-2023; 1-232470-00102470-0029CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevD.108.105009info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.108.105009info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:39:03Zoai:ri.conicet.gov.ar:11336/233658instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:39:03.889CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Rényi entropies in the n →0 limit and entanglement temperatures |
title |
Rényi entropies in the n →0 limit and entanglement temperatures |
spellingShingle |
Rényi entropies in the n →0 limit and entanglement temperatures Agón, Cesar A. Information Theory Unruh Effect Renyi Entropy Quantum Field Theory |
title_short |
Rényi entropies in the n →0 limit and entanglement temperatures |
title_full |
Rényi entropies in the n →0 limit and entanglement temperatures |
title_fullStr |
Rényi entropies in the n →0 limit and entanglement temperatures |
title_full_unstemmed |
Rényi entropies in the n →0 limit and entanglement temperatures |
title_sort |
Rényi entropies in the n →0 limit and entanglement temperatures |
dc.creator.none.fl_str_mv |
Agón, Cesar A. Casini, Horacio German Martinez, Pedro Jorge |
author |
Agón, Cesar A. |
author_facet |
Agón, Cesar A. Casini, Horacio German Martinez, Pedro Jorge |
author_role |
author |
author2 |
Casini, Horacio German Martinez, Pedro Jorge |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Information Theory Unruh Effect Renyi Entropy Quantum Field Theory |
topic |
Information Theory Unruh Effect Renyi Entropy Quantum Field Theory |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Entanglement temperatures (ET) are a generalization of Unruh temperatures valid for states reduced to any region of space. They encode in a thermal fashion the high energy behavior of the state around a point. These temperatures are determined by an eikonal equation in Euclidean space. We show that the real-time continuation of these equations implies ballistic propagation. For theories with a free UV fixed point, the ET determines the state at a large modular temperature. In particular, we show that the n→0 limit of Rényi entropies Sn, can be computed from the ET. This establishes a formula for these Rényi entropies for any region in terms of solutions of the eikonal equations. In the n→0 limit, the relevant high-temperature state propagation is determined by a free relativistic Boltzmann equation, with an infinite tower of conserved currents. For the special case of states and regions with a conformal Killing symmetry, these equations coincide with the ones of a perfect fluid. Fil: Agón, Cesar A.. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina Fil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Martinez, Pedro Jorge. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina |
description |
Entanglement temperatures (ET) are a generalization of Unruh temperatures valid for states reduced to any region of space. They encode in a thermal fashion the high energy behavior of the state around a point. These temperatures are determined by an eikonal equation in Euclidean space. We show that the real-time continuation of these equations implies ballistic propagation. For theories with a free UV fixed point, the ET determines the state at a large modular temperature. In particular, we show that the n→0 limit of Rényi entropies Sn, can be computed from the ET. This establishes a formula for these Rényi entropies for any region in terms of solutions of the eikonal equations. In the n→0 limit, the relevant high-temperature state propagation is determined by a free relativistic Boltzmann equation, with an infinite tower of conserved currents. For the special case of states and regions with a conformal Killing symmetry, these equations coincide with the ones of a perfect fluid. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/233658 Agón, Cesar A.; Casini, Horacio German; Martinez, Pedro Jorge; Rényi entropies in the n →0 limit and entanglement temperatures; American Physical Society; Physical Review D; 108; 10; 11-2023; 1-23 2470-0010 2470-0029 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/233658 |
identifier_str_mv |
Agón, Cesar A.; Casini, Horacio German; Martinez, Pedro Jorge; Rényi entropies in the n →0 limit and entanglement temperatures; American Physical Society; Physical Review D; 108; 10; 11-2023; 1-23 2470-0010 2470-0029 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevD.108.105009 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.108.105009 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614415098314752 |
score |
13.070432 |