An efficient action detection from first person vision with attention model
- Autores
- Straminsky, Axel; Jacobo, Julio; Buemi, María Elena
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The goal of this work is to propose possible improvements on one of the latest models for Video Action Recognition based on currently existing attention mechanisms. We took a model architecture that uses 2 sub-models in paralell: one based on Optical Flow and the other based on the video itself, and proposed the following improvements: adding mixed precision in the training loop, using a Ranger optimizer instead of SGD, and expanding the Attention Mechanism. The video database used for this work was the EGTEA+ that is a action database of first person videos of daily activities.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
First Person Vision
Human Computer Interaction
Action Recognition
Attention module - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/141291
Ver los metadatos del registro completo
id |
SEDICI_a95be7c5464ddeaa4f1a48013637a885 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/141291 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
An efficient action detection from first person vision with attention modelStraminsky, AxelJacobo, JulioBuemi, María ElenaCiencias InformáticasFirst Person VisionHuman Computer InteractionAction RecognitionAttention moduleThe goal of this work is to propose possible improvements on one of the latest models for Video Action Recognition based on currently existing attention mechanisms. We took a model architecture that uses 2 sub-models in paralell: one based on Optical Flow and the other based on the video itself, and proposed the following improvements: adding mixed precision in the training loop, using a Ranger optimizer instead of SGD, and expanding the Attention Mechanism. The video database used for this work was the EGTEA+ that is a action database of first person videos of daily activities.Sociedad Argentina de Informática e Investigación Operativa2021-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf36-39http://sedici.unlp.edu.ar/handle/10915/141291enginfo:eu-repo/semantics/altIdentifier/url/http://50jaiio.sadio.org.ar/pdfs/saiv/SAIV-08.pdfinfo:eu-repo/semantics/altIdentifier/issn/2683-8990info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/3.0/Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:35:53Zoai:sedici.unlp.edu.ar:10915/141291Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:35:53.84SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
An efficient action detection from first person vision with attention model |
title |
An efficient action detection from first person vision with attention model |
spellingShingle |
An efficient action detection from first person vision with attention model Straminsky, Axel Ciencias Informáticas First Person Vision Human Computer Interaction Action Recognition Attention module |
title_short |
An efficient action detection from first person vision with attention model |
title_full |
An efficient action detection from first person vision with attention model |
title_fullStr |
An efficient action detection from first person vision with attention model |
title_full_unstemmed |
An efficient action detection from first person vision with attention model |
title_sort |
An efficient action detection from first person vision with attention model |
dc.creator.none.fl_str_mv |
Straminsky, Axel Jacobo, Julio Buemi, María Elena |
author |
Straminsky, Axel |
author_facet |
Straminsky, Axel Jacobo, Julio Buemi, María Elena |
author_role |
author |
author2 |
Jacobo, Julio Buemi, María Elena |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas First Person Vision Human Computer Interaction Action Recognition Attention module |
topic |
Ciencias Informáticas First Person Vision Human Computer Interaction Action Recognition Attention module |
dc.description.none.fl_txt_mv |
The goal of this work is to propose possible improvements on one of the latest models for Video Action Recognition based on currently existing attention mechanisms. We took a model architecture that uses 2 sub-models in paralell: one based on Optical Flow and the other based on the video itself, and proposed the following improvements: adding mixed precision in the training loop, using a Ranger optimizer instead of SGD, and expanding the Attention Mechanism. The video database used for this work was the EGTEA+ that is a action database of first person videos of daily activities. Sociedad Argentina de Informática e Investigación Operativa |
description |
The goal of this work is to propose possible improvements on one of the latest models for Video Action Recognition based on currently existing attention mechanisms. We took a model architecture that uses 2 sub-models in paralell: one based on Optical Flow and the other based on the video itself, and proposed the following improvements: adding mixed precision in the training loop, using a Ranger optimizer instead of SGD, and expanding the Attention Mechanism. The video database used for this work was the EGTEA+ that is a action database of first person videos of daily activities. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/141291 |
url |
http://sedici.unlp.edu.ar/handle/10915/141291 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://50jaiio.sadio.org.ar/pdfs/saiv/SAIV-08.pdf info:eu-repo/semantics/altIdentifier/issn/2683-8990 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/3.0/ Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/3.0/ Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) |
dc.format.none.fl_str_mv |
application/pdf 36-39 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616237421690880 |
score |
13.070432 |