Bacteria-based self-healing concrete
- Autores
- Jonkers, H. M.
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A typical durability-related phenomenon in many concrete constructions is crack formation. While larger cracks hamper structural integrity, also smaller sub-millimeter sized cracks may result in durability problems as particularly connected cracks increase matrix permeability. Ingress water and chemicals can cause premature matrix degradation and corrosion of embedded steel reinforcement. As regular manual maintenance and repair of concrete constructions is costly and in some cases not at all possible, inclusion of an autonomous self- healing repair mechanism would be highly beneficial as it could both reduce maintenance and increase material durability. Therefore, within the Delft Centre for Materials at the Delft University of Technology, the functionality of various self healing additives is investigated in order to develop a new generation of self-healing concretes. In the present study the crack healing capacity of a specific bio-chemical additive, consisting of a mixture of viable but dormant bacteria and organic compounds packed in porous expanded clay particles, was investigated. Microscopic techniques in combination with permeability tests revealed that complete healing of cracks occurred in bacterial concrete and only partly in control concrete. The mechanism of crack healing in bacterial concrete presumably occurs through metabolic conversion of calcium lactate to calcium carbonate what results in crack-sealing. This bio- chemically mediated process resulted in efficient sealing of sub-millimeter sized (0.15 mm width) cracks. It is expected that further development of this new type of self-healing concrete will result in a more durable and moreover sustainable concrete which will be particularly suited for applications in wet environments where reinforcement corrosion tends to impede durability of traditional concrete constructions.
Academia de la Ingeniería de la provincia de Buenos Aires - Materia
-
Ingeniería
Concrete crack-healing
Permeability
Bacteria
Calcium carbonate formation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/119709
Ver los metadatos del registro completo
id |
SEDICI_a8082d07069cbcc411e3b328e9975b2f |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/119709 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Bacteria-based self-healing concreteJonkers, H. M.IngenieríaConcrete crack-healingPermeabilityBacteriaCalcium carbonate formationA typical durability-related phenomenon in many concrete constructions is crack formation. While larger cracks hamper structural integrity, also smaller sub-millimeter sized cracks may result in durability problems as particularly connected cracks increase matrix permeability. Ingress water and chemicals can cause premature matrix degradation and corrosion of embedded steel reinforcement. As regular manual maintenance and repair of concrete constructions is costly and in some cases not at all possible, inclusion of an autonomous self- healing repair mechanism would be highly beneficial as it could both reduce maintenance and increase material durability. Therefore, within the Delft Centre for Materials at the Delft University of Technology, the functionality of various self healing additives is investigated in order to develop a new generation of self-healing concretes. In the present study the crack healing capacity of a specific bio-chemical additive, consisting of a mixture of viable but dormant bacteria and organic compounds packed in porous expanded clay particles, was investigated. Microscopic techniques in combination with permeability tests revealed that complete healing of cracks occurred in bacterial concrete and only partly in control concrete. The mechanism of crack healing in bacterial concrete presumably occurs through metabolic conversion of calcium lactate to calcium carbonate what results in crack-sealing. This bio- chemically mediated process resulted in efficient sealing of sub-millimeter sized (0.15 mm width) cracks. It is expected that further development of this new type of self-healing concrete will result in a more durable and moreover sustainable concrete which will be particularly suited for applications in wet environments where reinforcement corrosion tends to impede durability of traditional concrete constructions.Academia de la Ingeniería de la provincia de Buenos Aires2021-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf84-93http://sedici.unlp.edu.ar/handle/10915/119709enginfo:eu-repo/semantics/altIdentifier/issn/2796-7042info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-10T12:30:55Zoai:sedici.unlp.edu.ar:10915/119709Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-10 12:30:55.479SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Bacteria-based self-healing concrete |
title |
Bacteria-based self-healing concrete |
spellingShingle |
Bacteria-based self-healing concrete Jonkers, H. M. Ingeniería Concrete crack-healing Permeability Bacteria Calcium carbonate formation |
title_short |
Bacteria-based self-healing concrete |
title_full |
Bacteria-based self-healing concrete |
title_fullStr |
Bacteria-based self-healing concrete |
title_full_unstemmed |
Bacteria-based self-healing concrete |
title_sort |
Bacteria-based self-healing concrete |
dc.creator.none.fl_str_mv |
Jonkers, H. M. |
author |
Jonkers, H. M. |
author_facet |
Jonkers, H. M. |
author_role |
author |
dc.subject.none.fl_str_mv |
Ingeniería Concrete crack-healing Permeability Bacteria Calcium carbonate formation |
topic |
Ingeniería Concrete crack-healing Permeability Bacteria Calcium carbonate formation |
dc.description.none.fl_txt_mv |
A typical durability-related phenomenon in many concrete constructions is crack formation. While larger cracks hamper structural integrity, also smaller sub-millimeter sized cracks may result in durability problems as particularly connected cracks increase matrix permeability. Ingress water and chemicals can cause premature matrix degradation and corrosion of embedded steel reinforcement. As regular manual maintenance and repair of concrete constructions is costly and in some cases not at all possible, inclusion of an autonomous self- healing repair mechanism would be highly beneficial as it could both reduce maintenance and increase material durability. Therefore, within the Delft Centre for Materials at the Delft University of Technology, the functionality of various self healing additives is investigated in order to develop a new generation of self-healing concretes. In the present study the crack healing capacity of a specific bio-chemical additive, consisting of a mixture of viable but dormant bacteria and organic compounds packed in porous expanded clay particles, was investigated. Microscopic techniques in combination with permeability tests revealed that complete healing of cracks occurred in bacterial concrete and only partly in control concrete. The mechanism of crack healing in bacterial concrete presumably occurs through metabolic conversion of calcium lactate to calcium carbonate what results in crack-sealing. This bio- chemically mediated process resulted in efficient sealing of sub-millimeter sized (0.15 mm width) cracks. It is expected that further development of this new type of self-healing concrete will result in a more durable and moreover sustainable concrete which will be particularly suited for applications in wet environments where reinforcement corrosion tends to impede durability of traditional concrete constructions. Academia de la Ingeniería de la provincia de Buenos Aires |
description |
A typical durability-related phenomenon in many concrete constructions is crack formation. While larger cracks hamper structural integrity, also smaller sub-millimeter sized cracks may result in durability problems as particularly connected cracks increase matrix permeability. Ingress water and chemicals can cause premature matrix degradation and corrosion of embedded steel reinforcement. As regular manual maintenance and repair of concrete constructions is costly and in some cases not at all possible, inclusion of an autonomous self- healing repair mechanism would be highly beneficial as it could both reduce maintenance and increase material durability. Therefore, within the Delft Centre for Materials at the Delft University of Technology, the functionality of various self healing additives is investigated in order to develop a new generation of self-healing concretes. In the present study the crack healing capacity of a specific bio-chemical additive, consisting of a mixture of viable but dormant bacteria and organic compounds packed in porous expanded clay particles, was investigated. Microscopic techniques in combination with permeability tests revealed that complete healing of cracks occurred in bacterial concrete and only partly in control concrete. The mechanism of crack healing in bacterial concrete presumably occurs through metabolic conversion of calcium lactate to calcium carbonate what results in crack-sealing. This bio- chemically mediated process resulted in efficient sealing of sub-millimeter sized (0.15 mm width) cracks. It is expected that further development of this new type of self-healing concrete will result in a more durable and moreover sustainable concrete which will be particularly suited for applications in wet environments where reinforcement corrosion tends to impede durability of traditional concrete constructions. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/119709 |
url |
http://sedici.unlp.edu.ar/handle/10915/119709 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/2796-7042 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 84-93 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842904407538139136 |
score |
12.885934 |