Bacteria-based self-healing concrete

Autores
Jonkers, H. M.
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A typical durability-related phenomenon in many concrete constructions is crack formation. While larger cracks hamper structural integrity, also smaller sub-millimeter sized cracks may result in durability problems as particularly connected cracks increase matrix permeability. Ingress water and chemicals can cause premature matrix degradation and corrosion of embedded steel reinforcement. As regular manual maintenance and repair of concrete constructions is costly and in some cases not at all possible, inclusion of an autonomous self- healing repair mechanism would be highly beneficial as it could both reduce maintenance and increase material durability. Therefore, within the Delft Centre for Materials at the Delft University of Technology, the functionality of various self healing additives is investigated in order to develop a new generation of self-healing concretes. In the present study the crack healing capacity of a specific bio-chemical additive, consisting of a mixture of viable but dormant bacteria and organic compounds packed in porous expanded clay particles, was investigated. Microscopic techniques in combination with permeability tests revealed that complete healing of cracks occurred in bacterial concrete and only partly in control concrete. The mechanism of crack healing in bacterial concrete presumably occurs through metabolic conversion of calcium lactate to calcium carbonate what results in crack-sealing. This bio- chemically mediated process resulted in efficient sealing of sub-millimeter sized (0.15 mm width) cracks. It is expected that further development of this new type of self-healing concrete will result in a more durable and moreover sustainable concrete which will be particularly suited for applications in wet environments where reinforcement corrosion tends to impede durability of traditional concrete constructions.
Academia de la Ingeniería de la provincia de Buenos Aires
Materia
Ingeniería
Concrete crack-healing
Permeability
Bacteria
Calcium carbonate formation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/119709

id SEDICI_a8082d07069cbcc411e3b328e9975b2f
oai_identifier_str oai:sedici.unlp.edu.ar:10915/119709
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Bacteria-based self-healing concreteJonkers, H. M.IngenieríaConcrete crack-healingPermeabilityBacteriaCalcium carbonate formationA typical durability-related phenomenon in many concrete constructions is crack formation. While larger cracks hamper structural integrity, also smaller sub-millimeter sized cracks may result in durability problems as particularly connected cracks increase matrix permeability. Ingress water and chemicals can cause premature matrix degradation and corrosion of embedded steel reinforcement. As regular manual maintenance and repair of concrete constructions is costly and in some cases not at all possible, inclusion of an autonomous self- healing repair mechanism would be highly beneficial as it could both reduce maintenance and increase material durability. Therefore, within the Delft Centre for Materials at the Delft University of Technology, the functionality of various self healing additives is investigated in order to develop a new generation of self-healing concretes. In the present study the crack healing capacity of a specific bio-chemical additive, consisting of a mixture of viable but dormant bacteria and organic compounds packed in porous expanded clay particles, was investigated. Microscopic techniques in combination with permeability tests revealed that complete healing of cracks occurred in bacterial concrete and only partly in control concrete. The mechanism of crack healing in bacterial concrete presumably occurs through metabolic conversion of calcium lactate to calcium carbonate what results in crack-sealing. This bio- chemically mediated process resulted in efficient sealing of sub-millimeter sized (0.15 mm width) cracks. It is expected that further development of this new type of self-healing concrete will result in a more durable and moreover sustainable concrete which will be particularly suited for applications in wet environments where reinforcement corrosion tends to impede durability of traditional concrete constructions.Academia de la Ingeniería de la provincia de Buenos Aires2021-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf84-93http://sedici.unlp.edu.ar/handle/10915/119709enginfo:eu-repo/semantics/altIdentifier/issn/2796-7042info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-10T12:30:55Zoai:sedici.unlp.edu.ar:10915/119709Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-10 12:30:55.479SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Bacteria-based self-healing concrete
title Bacteria-based self-healing concrete
spellingShingle Bacteria-based self-healing concrete
Jonkers, H. M.
Ingeniería
Concrete crack-healing
Permeability
Bacteria
Calcium carbonate formation
title_short Bacteria-based self-healing concrete
title_full Bacteria-based self-healing concrete
title_fullStr Bacteria-based self-healing concrete
title_full_unstemmed Bacteria-based self-healing concrete
title_sort Bacteria-based self-healing concrete
dc.creator.none.fl_str_mv Jonkers, H. M.
author Jonkers, H. M.
author_facet Jonkers, H. M.
author_role author
dc.subject.none.fl_str_mv Ingeniería
Concrete crack-healing
Permeability
Bacteria
Calcium carbonate formation
topic Ingeniería
Concrete crack-healing
Permeability
Bacteria
Calcium carbonate formation
dc.description.none.fl_txt_mv A typical durability-related phenomenon in many concrete constructions is crack formation. While larger cracks hamper structural integrity, also smaller sub-millimeter sized cracks may result in durability problems as particularly connected cracks increase matrix permeability. Ingress water and chemicals can cause premature matrix degradation and corrosion of embedded steel reinforcement. As regular manual maintenance and repair of concrete constructions is costly and in some cases not at all possible, inclusion of an autonomous self- healing repair mechanism would be highly beneficial as it could both reduce maintenance and increase material durability. Therefore, within the Delft Centre for Materials at the Delft University of Technology, the functionality of various self healing additives is investigated in order to develop a new generation of self-healing concretes. In the present study the crack healing capacity of a specific bio-chemical additive, consisting of a mixture of viable but dormant bacteria and organic compounds packed in porous expanded clay particles, was investigated. Microscopic techniques in combination with permeability tests revealed that complete healing of cracks occurred in bacterial concrete and only partly in control concrete. The mechanism of crack healing in bacterial concrete presumably occurs through metabolic conversion of calcium lactate to calcium carbonate what results in crack-sealing. This bio- chemically mediated process resulted in efficient sealing of sub-millimeter sized (0.15 mm width) cracks. It is expected that further development of this new type of self-healing concrete will result in a more durable and moreover sustainable concrete which will be particularly suited for applications in wet environments where reinforcement corrosion tends to impede durability of traditional concrete constructions.
Academia de la Ingeniería de la provincia de Buenos Aires
description A typical durability-related phenomenon in many concrete constructions is crack formation. While larger cracks hamper structural integrity, also smaller sub-millimeter sized cracks may result in durability problems as particularly connected cracks increase matrix permeability. Ingress water and chemicals can cause premature matrix degradation and corrosion of embedded steel reinforcement. As regular manual maintenance and repair of concrete constructions is costly and in some cases not at all possible, inclusion of an autonomous self- healing repair mechanism would be highly beneficial as it could both reduce maintenance and increase material durability. Therefore, within the Delft Centre for Materials at the Delft University of Technology, the functionality of various self healing additives is investigated in order to develop a new generation of self-healing concretes. In the present study the crack healing capacity of a specific bio-chemical additive, consisting of a mixture of viable but dormant bacteria and organic compounds packed in porous expanded clay particles, was investigated. Microscopic techniques in combination with permeability tests revealed that complete healing of cracks occurred in bacterial concrete and only partly in control concrete. The mechanism of crack healing in bacterial concrete presumably occurs through metabolic conversion of calcium lactate to calcium carbonate what results in crack-sealing. This bio- chemically mediated process resulted in efficient sealing of sub-millimeter sized (0.15 mm width) cracks. It is expected that further development of this new type of self-healing concrete will result in a more durable and moreover sustainable concrete which will be particularly suited for applications in wet environments where reinforcement corrosion tends to impede durability of traditional concrete constructions.
publishDate 2021
dc.date.none.fl_str_mv 2021-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/119709
url http://sedici.unlp.edu.ar/handle/10915/119709
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/2796-7042
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
84-93
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842904407538139136
score 12.885934