Distribution, stability and fate of phenolic compounds in white and purple eggplants (Solanum melongena L.)
- Autores
- Zaro, María José; Chaves, Alicia Raquel; Vicente, Ariel Roberto; Concellón, Analía
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Eggplants rank among the vegetables richest in antioxidants, but little is known about the allocation, stability, and turnover of these metabolites. The distribution, accumulation and degradation of phenolic antioxidants in the inner and outer pulp of two commercially important eggplant types (white and dark purple), at harvest and after 14 and 30 d of refrigerated storage under non-chilling conditions (10 °C and 90% RH) were determined in this study. Chlorogenic acid (ChA) was histolocalized by fluorescence with 2-aminoethyl-diphenylborinate and the activity of phenolic compounds oxidizing enzymes (polyphenoloxidase, PPO and peroxidase, POD) as well as H2O2 concentration in both fruit regions was determined. During storage, dark purple fruit were more susceptible to dehydration and showed greater deterioration than white eggplants. Both genotypes accumulated higher sugar content in the inner pulp as opposed to acids, which were more concentrated in the outer region. At harvest, pulp antioxidant capacity was similar in both eggplant types. TEAC and DPPHassays and in situ localization, showed greater total antioxidants and ChA content in the core than in the outer pulp in both white and dark purple fruit. The stability of ChA was markedly different between genotypes. In white fruit, antioxidants increased during the first two weeks of storage, remaining stable afterwards. In contrast, in dark purple eggplants, phenolic compounds declined after an initial stage at which they accumulated. PPO and POD in vitro activities, associated mainly with fruit seeds, fibers, and vascular bundles did not correlate with pulp browning or loss of phenolic antioxidants. Instead, the reduction of ChA in the core of dark purple fruit was associated with increased production of H2O2. Results indicate that antioxidants are predominantly located in the inner pulp of eggplants regardless of the genotype, but are more stable in white fruit. Rather than being the result of browning reactions, substantial losses of phenolic antioxidants in whole eggplants under the recommended storage conditions likely result from seed coat development and vascular lignification in the immature fruit.
Centro de Investigación y Desarrollo en Criotecnología de Alimentos - Materia
-
Química
Quality
Antioxidants
Peroxidase
Polyphenol oxidase
Hydrogen peroxide - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/97241
Ver los metadatos del registro completo
id |
SEDICI_a40bb3d9527bc4bcbdfd92be74eace22 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/97241 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Distribution, stability and fate of phenolic compounds in white and purple eggplants (Solanum melongena L.)Zaro, María JoséChaves, Alicia RaquelVicente, Ariel RobertoConcellón, AnalíaQuímicaQualityAntioxidantsPeroxidasePolyphenol oxidaseHydrogen peroxideEggplants rank among the vegetables richest in antioxidants, but little is known about the allocation, stability, and turnover of these metabolites. The distribution, accumulation and degradation of phenolic antioxidants in the inner and outer pulp of two commercially important eggplant types (white and dark purple), at harvest and after 14 and 30 d of refrigerated storage under non-chilling conditions (10 °C and 90% RH) were determined in this study. Chlorogenic acid (ChA) was histolocalized by fluorescence with 2-aminoethyl-diphenylborinate and the activity of phenolic compounds oxidizing enzymes (polyphenoloxidase, PPO and peroxidase, POD) as well as H2O2 concentration in both fruit regions was determined. During storage, dark purple fruit were more susceptible to dehydration and showed greater deterioration than white eggplants. Both genotypes accumulated higher sugar content in the inner pulp as opposed to acids, which were more concentrated in the outer region. At harvest, pulp antioxidant capacity was similar in both eggplant types. TEAC and DPPHassays and in situ localization, showed greater total antioxidants and ChA content in the core than in the outer pulp in both white and dark purple fruit. The stability of ChA was markedly different between genotypes. In white fruit, antioxidants increased during the first two weeks of storage, remaining stable afterwards. In contrast, in dark purple eggplants, phenolic compounds declined after an initial stage at which they accumulated. PPO and POD in vitro activities, associated mainly with fruit seeds, fibers, and vascular bundles did not correlate with pulp browning or loss of phenolic antioxidants. Instead, the reduction of ChA in the core of dark purple fruit was associated with increased production of H2O2. Results indicate that antioxidants are predominantly located in the inner pulp of eggplants regardless of the genotype, but are more stable in white fruit. Rather than being the result of browning reactions, substantial losses of phenolic antioxidants in whole eggplants under the recommended storage conditions likely result from seed coat development and vascular lignification in the immature fruit.Centro de Investigación y Desarrollo en Criotecnología de Alimentos2014-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf70-78http://sedici.unlp.edu.ar/handle/10915/97241enginfo:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/33102info:eu-repo/semantics/altIdentifier/issn/0925-5214info:eu-repo/semantics/altIdentifier/doi/10.1016/j.postharvbio.2014.01.016info:eu-repo/semantics/altIdentifier/hdl/11336/33102info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:20:01Zoai:sedici.unlp.edu.ar:10915/97241Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:20:02.088SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Distribution, stability and fate of phenolic compounds in white and purple eggplants (Solanum melongena L.) |
title |
Distribution, stability and fate of phenolic compounds in white and purple eggplants (Solanum melongena L.) |
spellingShingle |
Distribution, stability and fate of phenolic compounds in white and purple eggplants (Solanum melongena L.) Zaro, María José Química Quality Antioxidants Peroxidase Polyphenol oxidase Hydrogen peroxide |
title_short |
Distribution, stability and fate of phenolic compounds in white and purple eggplants (Solanum melongena L.) |
title_full |
Distribution, stability and fate of phenolic compounds in white and purple eggplants (Solanum melongena L.) |
title_fullStr |
Distribution, stability and fate of phenolic compounds in white and purple eggplants (Solanum melongena L.) |
title_full_unstemmed |
Distribution, stability and fate of phenolic compounds in white and purple eggplants (Solanum melongena L.) |
title_sort |
Distribution, stability and fate of phenolic compounds in white and purple eggplants (Solanum melongena L.) |
dc.creator.none.fl_str_mv |
Zaro, María José Chaves, Alicia Raquel Vicente, Ariel Roberto Concellón, Analía |
author |
Zaro, María José |
author_facet |
Zaro, María José Chaves, Alicia Raquel Vicente, Ariel Roberto Concellón, Analía |
author_role |
author |
author2 |
Chaves, Alicia Raquel Vicente, Ariel Roberto Concellón, Analía |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Química Quality Antioxidants Peroxidase Polyphenol oxidase Hydrogen peroxide |
topic |
Química Quality Antioxidants Peroxidase Polyphenol oxidase Hydrogen peroxide |
dc.description.none.fl_txt_mv |
Eggplants rank among the vegetables richest in antioxidants, but little is known about the allocation, stability, and turnover of these metabolites. The distribution, accumulation and degradation of phenolic antioxidants in the inner and outer pulp of two commercially important eggplant types (white and dark purple), at harvest and after 14 and 30 d of refrigerated storage under non-chilling conditions (10 °C and 90% RH) were determined in this study. Chlorogenic acid (ChA) was histolocalized by fluorescence with 2-aminoethyl-diphenylborinate and the activity of phenolic compounds oxidizing enzymes (polyphenoloxidase, PPO and peroxidase, POD) as well as H2O2 concentration in both fruit regions was determined. During storage, dark purple fruit were more susceptible to dehydration and showed greater deterioration than white eggplants. Both genotypes accumulated higher sugar content in the inner pulp as opposed to acids, which were more concentrated in the outer region. At harvest, pulp antioxidant capacity was similar in both eggplant types. TEAC and DPPHassays and in situ localization, showed greater total antioxidants and ChA content in the core than in the outer pulp in both white and dark purple fruit. The stability of ChA was markedly different between genotypes. In white fruit, antioxidants increased during the first two weeks of storage, remaining stable afterwards. In contrast, in dark purple eggplants, phenolic compounds declined after an initial stage at which they accumulated. PPO and POD in vitro activities, associated mainly with fruit seeds, fibers, and vascular bundles did not correlate with pulp browning or loss of phenolic antioxidants. Instead, the reduction of ChA in the core of dark purple fruit was associated with increased production of H2O2. Results indicate that antioxidants are predominantly located in the inner pulp of eggplants regardless of the genotype, but are more stable in white fruit. Rather than being the result of browning reactions, substantial losses of phenolic antioxidants in whole eggplants under the recommended storage conditions likely result from seed coat development and vascular lignification in the immature fruit. Centro de Investigación y Desarrollo en Criotecnología de Alimentos |
description |
Eggplants rank among the vegetables richest in antioxidants, but little is known about the allocation, stability, and turnover of these metabolites. The distribution, accumulation and degradation of phenolic antioxidants in the inner and outer pulp of two commercially important eggplant types (white and dark purple), at harvest and after 14 and 30 d of refrigerated storage under non-chilling conditions (10 °C and 90% RH) were determined in this study. Chlorogenic acid (ChA) was histolocalized by fluorescence with 2-aminoethyl-diphenylborinate and the activity of phenolic compounds oxidizing enzymes (polyphenoloxidase, PPO and peroxidase, POD) as well as H2O2 concentration in both fruit regions was determined. During storage, dark purple fruit were more susceptible to dehydration and showed greater deterioration than white eggplants. Both genotypes accumulated higher sugar content in the inner pulp as opposed to acids, which were more concentrated in the outer region. At harvest, pulp antioxidant capacity was similar in both eggplant types. TEAC and DPPHassays and in situ localization, showed greater total antioxidants and ChA content in the core than in the outer pulp in both white and dark purple fruit. The stability of ChA was markedly different between genotypes. In white fruit, antioxidants increased during the first two weeks of storage, remaining stable afterwards. In contrast, in dark purple eggplants, phenolic compounds declined after an initial stage at which they accumulated. PPO and POD in vitro activities, associated mainly with fruit seeds, fibers, and vascular bundles did not correlate with pulp browning or loss of phenolic antioxidants. Instead, the reduction of ChA in the core of dark purple fruit was associated with increased production of H2O2. Results indicate that antioxidants are predominantly located in the inner pulp of eggplants regardless of the genotype, but are more stable in white fruit. Rather than being the result of browning reactions, substantial losses of phenolic antioxidants in whole eggplants under the recommended storage conditions likely result from seed coat development and vascular lignification in the immature fruit. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/97241 |
url |
http://sedici.unlp.edu.ar/handle/10915/97241 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/33102 info:eu-repo/semantics/altIdentifier/issn/0925-5214 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.postharvbio.2014.01.016 info:eu-repo/semantics/altIdentifier/hdl/11336/33102 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 70-78 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616074598809600 |
score |
13.070432 |