Cell volume regulation and aquaporins
- Autores
- Capurro, Claudia; Galizia, Luciano; Ford, Paula
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- reseña artículo
- Estado
- versión publicada
- Descripción
- In the recent years, the importance of the volume of a given cell has been accepted not only in defining its intracellular osmolality and its shape, but also in defining other cellular functions, such as transepithelial transport, cell migration, cell growth, cell death and the regulation of intracellular metabolism (35). Since most cells have to perform these physiological functions under a variable osmotic stress, cell volume must be carefully regulated. Based on the origin of the disturbance, cell volume changes are frequently classified into two categories: anisosmotic (alterations in extracellular solute concentration) and isosmotic (alterations in intracellular solute concentration) volume changes. Because of the relatively high permeability of the plasma membrane for water, any such gradient results in the immediate flow of water into or out of the cell causing cell swelling or shrinkage. To regulate cell volume, cells use channels and transport systems to flux osmolytes across the plasma membrane, followed by the obligatory movement of water. The current review reflects these developments and focuses on the contributions of aquaporins water channels in regulatory volume processes in a variety of cells.
Sociedad Argentina de Fisiología - Materia
-
Ciencias Médicas
cells
cell volume
aquaporins - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/129070
Ver los metadatos del registro completo
id |
SEDICI_a08f47aeeb84dc8edb061afc09c499a2 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/129070 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Cell volume regulation and aquaporinsCapurro, ClaudiaGalizia, LucianoFord, PaulaCiencias Médicascellscell volumeaquaporinsIn the recent years, the importance of the volume of a given cell has been accepted not only in defining its intracellular osmolality and its shape, but also in defining other cellular functions, such as transepithelial transport, cell migration, cell growth, cell death and the regulation of intracellular metabolism (35). Since most cells have to perform these physiological functions under a variable osmotic stress, cell volume must be carefully regulated. Based on the origin of the disturbance, cell volume changes are frequently classified into two categories: anisosmotic (alterations in extracellular solute concentration) and isosmotic (alterations in intracellular solute concentration) volume changes. Because of the relatively high permeability of the plasma membrane for water, any such gradient results in the immediate flow of water into or out of the cell causing cell swelling or shrinkage. To regulate cell volume, cells use channels and transport systems to flux osmolytes across the plasma membrane, followed by the obligatory movement of water. The current review reflects these developments and focuses on the contributions of aquaporins water channels in regulatory volume processes in a variety of cells.Sociedad Argentina de Fisiología2008info:eu-repo/semantics/reviewinfo:eu-repo/semantics/publishedVersionRevisionhttp://purl.org/coar/resource_type/c_dcae04bcinfo:ar-repo/semantics/resenaArticuloapplication/pdf9-17http://sedici.unlp.edu.ar/handle/10915/129070enginfo:eu-repo/semantics/altIdentifier/url/https://pmr.safisiol.org.ar/archive/id/20info:eu-repo/semantics/altIdentifier/issn/1669-5402info:eu-repo/semantics/altIdentifier/issn/1669-5410info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:31:27Zoai:sedici.unlp.edu.ar:10915/129070Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:31:27.722SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Cell volume regulation and aquaporins |
title |
Cell volume regulation and aquaporins |
spellingShingle |
Cell volume regulation and aquaporins Capurro, Claudia Ciencias Médicas cells cell volume aquaporins |
title_short |
Cell volume regulation and aquaporins |
title_full |
Cell volume regulation and aquaporins |
title_fullStr |
Cell volume regulation and aquaporins |
title_full_unstemmed |
Cell volume regulation and aquaporins |
title_sort |
Cell volume regulation and aquaporins |
dc.creator.none.fl_str_mv |
Capurro, Claudia Galizia, Luciano Ford, Paula |
author |
Capurro, Claudia |
author_facet |
Capurro, Claudia Galizia, Luciano Ford, Paula |
author_role |
author |
author2 |
Galizia, Luciano Ford, Paula |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Médicas cells cell volume aquaporins |
topic |
Ciencias Médicas cells cell volume aquaporins |
dc.description.none.fl_txt_mv |
In the recent years, the importance of the volume of a given cell has been accepted not only in defining its intracellular osmolality and its shape, but also in defining other cellular functions, such as transepithelial transport, cell migration, cell growth, cell death and the regulation of intracellular metabolism (35). Since most cells have to perform these physiological functions under a variable osmotic stress, cell volume must be carefully regulated. Based on the origin of the disturbance, cell volume changes are frequently classified into two categories: anisosmotic (alterations in extracellular solute concentration) and isosmotic (alterations in intracellular solute concentration) volume changes. Because of the relatively high permeability of the plasma membrane for water, any such gradient results in the immediate flow of water into or out of the cell causing cell swelling or shrinkage. To regulate cell volume, cells use channels and transport systems to flux osmolytes across the plasma membrane, followed by the obligatory movement of water. The current review reflects these developments and focuses on the contributions of aquaporins water channels in regulatory volume processes in a variety of cells. Sociedad Argentina de Fisiología |
description |
In the recent years, the importance of the volume of a given cell has been accepted not only in defining its intracellular osmolality and its shape, but also in defining other cellular functions, such as transepithelial transport, cell migration, cell growth, cell death and the regulation of intracellular metabolism (35). Since most cells have to perform these physiological functions under a variable osmotic stress, cell volume must be carefully regulated. Based on the origin of the disturbance, cell volume changes are frequently classified into two categories: anisosmotic (alterations in extracellular solute concentration) and isosmotic (alterations in intracellular solute concentration) volume changes. Because of the relatively high permeability of the plasma membrane for water, any such gradient results in the immediate flow of water into or out of the cell causing cell swelling or shrinkage. To regulate cell volume, cells use channels and transport systems to flux osmolytes across the plasma membrane, followed by the obligatory movement of water. The current review reflects these developments and focuses on the contributions of aquaporins water channels in regulatory volume processes in a variety of cells. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/review info:eu-repo/semantics/publishedVersion Revision http://purl.org/coar/resource_type/c_dcae04bc info:ar-repo/semantics/resenaArticulo |
format |
review |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/129070 |
url |
http://sedici.unlp.edu.ar/handle/10915/129070 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pmr.safisiol.org.ar/archive/id/20 info:eu-repo/semantics/altIdentifier/issn/1669-5402 info:eu-repo/semantics/altIdentifier/issn/1669-5410 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf 9-17 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616194302148608 |
score |
13.070432 |