Plasmon Spectroscopy for Subnanometric Copper Particles: Dielectric Function and Core–Shell Sizing
- Autores
- Santillán, Jesica María José; Videla, Fabián Alfredo; Scaffardi, Lucía Beatriz; Schinca, Daniel Carlos
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the last years, there has been a growing interest in the study of transition metal nanoparticles (Nps) due to their potential applications in several fields of science and technology. In particular, their optical properties are governed by the characteristics of the dielectric function of the metal, its size and environment. This work analyses the separated contribution of free and bound electrons on the optical properties of copper Nps. Usually, the contribution of free electrons to the dielectric function is corrected for particle size through the modification of the damping constant, which is changed as usual introducing a term inversely proportional to the particle’s radius to account for the extra collisions with the boundary when the size approaches the electronic mean free path limit (about 10 nm). For bound electron contribution, the interband transitions from the d-band to the conduction band are considered together with the fact that the electronic density of states in the conduction band must be made size-dependent to account for the larger spacing between electronic energy levels as the particle decreases in size below 2 nm. Taking into account these specific modifications of free and bound electron contributions to the dielectric function, it was possible to fit the bulk complex dielectric function, and consequently, determine optical parameters and band energy values such as the coefficient for bound electron contribution Qbulk = 2 × 1024, gap energy Eg = 1.95 eV, Fermi energy EF = 2.15 eV, and damping constant for bound electrons γb = 1.15 × 1014 Hz. With both size-dependent contributions to the dielectric function, extinction spectra of copper Nps in the subnanometer radius range can be calculated using Mie’s theory and its behaviour with size can be analysed. These studies are applied to fit experimental extinction spectra of very small spherical core–shell Cu–Cu2O Nps generated by ultrafast laser ablation of a solid target in water. Theoretical calculations for subnanometric core radius are in excellent agreement with experimental results obtained from core–shell colloidal Nps. From the fitting, it is possible determining core radius and shell thickness of the Nps, showing that optical extinction spectroscopy is a good complementary technique to standard high-resolution electron microscopy for sizing spherical nanometric-subnanometric Nps.
Centro de Investigaciones Ópticas
Facultad de Ingeniería - Materia
-
Ciencias Exactas
Cu–Cu2O nanoparticles
Copper dielectric function
Subnanometric size - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/144996
Ver los metadatos del registro completo
id |
SEDICI_a088ec84d42936cadf0751783a690dac |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/144996 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Plasmon Spectroscopy for Subnanometric Copper Particles: Dielectric Function and Core–Shell SizingSantillán, Jesica María JoséVidela, Fabián AlfredoScaffardi, Lucía BeatrizSchinca, Daniel CarlosCiencias ExactasCu–Cu2O nanoparticlesCopper dielectric functionSubnanometric sizeIn the last years, there has been a growing interest in the study of transition metal nanoparticles (Nps) due to their potential applications in several fields of science and technology. In particular, their optical properties are governed by the characteristics of the dielectric function of the metal, its size and environment. This work analyses the separated contribution of free and bound electrons on the optical properties of copper Nps. Usually, the contribution of free electrons to the dielectric function is corrected for particle size through the modification of the damping constant, which is changed as usual introducing a term inversely proportional to the particle’s radius to account for the extra collisions with the boundary when the size approaches the electronic mean free path limit (about 10 nm). For bound electron contribution, the interband transitions from the d-band to the conduction band are considered together with the fact that the electronic density of states in the conduction band must be made size-dependent to account for the larger spacing between electronic energy levels as the particle decreases in size below 2 nm. Taking into account these specific modifications of free and bound electron contributions to the dielectric function, it was possible to fit the bulk complex dielectric function, and consequently, determine optical parameters and band energy values such as the coefficient for bound electron contribution Qbulk = 2 × 1024, gap energy Eg = 1.95 eV, Fermi energy EF = 2.15 eV, and damping constant for bound electrons γb = 1.15 × 1014 Hz. With both size-dependent contributions to the dielectric function, extinction spectra of copper Nps in the subnanometer radius range can be calculated using Mie’s theory and its behaviour with size can be analysed. These studies are applied to fit experimental extinction spectra of very small spherical core–shell Cu–Cu2O Nps generated by ultrafast laser ablation of a solid target in water. Theoretical calculations for subnanometric core radius are in excellent agreement with experimental results obtained from core–shell colloidal Nps. From the fitting, it is possible determining core radius and shell thickness of the Nps, showing that optical extinction spectroscopy is a good complementary technique to standard high-resolution electron microscopy for sizing spherical nanometric-subnanometric Nps.Centro de Investigaciones ÓpticasFacultad de Ingeniería2012-06-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf341-348http://sedici.unlp.edu.ar/handle/10915/144996enginfo:eu-repo/semantics/altIdentifier/issn/1557-1955info:eu-repo/semantics/altIdentifier/issn/1557-1963info:eu-repo/semantics/altIdentifier/doi/10.1007/s11468-012-9395-8info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:32:32Zoai:sedici.unlp.edu.ar:10915/144996Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:32:33.028SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Plasmon Spectroscopy for Subnanometric Copper Particles: Dielectric Function and Core–Shell Sizing |
title |
Plasmon Spectroscopy for Subnanometric Copper Particles: Dielectric Function and Core–Shell Sizing |
spellingShingle |
Plasmon Spectroscopy for Subnanometric Copper Particles: Dielectric Function and Core–Shell Sizing Santillán, Jesica María José Ciencias Exactas Cu–Cu2O nanoparticles Copper dielectric function Subnanometric size |
title_short |
Plasmon Spectroscopy for Subnanometric Copper Particles: Dielectric Function and Core–Shell Sizing |
title_full |
Plasmon Spectroscopy for Subnanometric Copper Particles: Dielectric Function and Core–Shell Sizing |
title_fullStr |
Plasmon Spectroscopy for Subnanometric Copper Particles: Dielectric Function and Core–Shell Sizing |
title_full_unstemmed |
Plasmon Spectroscopy for Subnanometric Copper Particles: Dielectric Function and Core–Shell Sizing |
title_sort |
Plasmon Spectroscopy for Subnanometric Copper Particles: Dielectric Function and Core–Shell Sizing |
dc.creator.none.fl_str_mv |
Santillán, Jesica María José Videla, Fabián Alfredo Scaffardi, Lucía Beatriz Schinca, Daniel Carlos |
author |
Santillán, Jesica María José |
author_facet |
Santillán, Jesica María José Videla, Fabián Alfredo Scaffardi, Lucía Beatriz Schinca, Daniel Carlos |
author_role |
author |
author2 |
Videla, Fabián Alfredo Scaffardi, Lucía Beatriz Schinca, Daniel Carlos |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Exactas Cu–Cu2O nanoparticles Copper dielectric function Subnanometric size |
topic |
Ciencias Exactas Cu–Cu2O nanoparticles Copper dielectric function Subnanometric size |
dc.description.none.fl_txt_mv |
In the last years, there has been a growing interest in the study of transition metal nanoparticles (Nps) due to their potential applications in several fields of science and technology. In particular, their optical properties are governed by the characteristics of the dielectric function of the metal, its size and environment. This work analyses the separated contribution of free and bound electrons on the optical properties of copper Nps. Usually, the contribution of free electrons to the dielectric function is corrected for particle size through the modification of the damping constant, which is changed as usual introducing a term inversely proportional to the particle’s radius to account for the extra collisions with the boundary when the size approaches the electronic mean free path limit (about 10 nm). For bound electron contribution, the interband transitions from the d-band to the conduction band are considered together with the fact that the electronic density of states in the conduction band must be made size-dependent to account for the larger spacing between electronic energy levels as the particle decreases in size below 2 nm. Taking into account these specific modifications of free and bound electron contributions to the dielectric function, it was possible to fit the bulk complex dielectric function, and consequently, determine optical parameters and band energy values such as the coefficient for bound electron contribution Qbulk = 2 × 1024, gap energy Eg = 1.95 eV, Fermi energy EF = 2.15 eV, and damping constant for bound electrons γb = 1.15 × 1014 Hz. With both size-dependent contributions to the dielectric function, extinction spectra of copper Nps in the subnanometer radius range can be calculated using Mie’s theory and its behaviour with size can be analysed. These studies are applied to fit experimental extinction spectra of very small spherical core–shell Cu–Cu2O Nps generated by ultrafast laser ablation of a solid target in water. Theoretical calculations for subnanometric core radius are in excellent agreement with experimental results obtained from core–shell colloidal Nps. From the fitting, it is possible determining core radius and shell thickness of the Nps, showing that optical extinction spectroscopy is a good complementary technique to standard high-resolution electron microscopy for sizing spherical nanometric-subnanometric Nps. Centro de Investigaciones Ópticas Facultad de Ingeniería |
description |
In the last years, there has been a growing interest in the study of transition metal nanoparticles (Nps) due to their potential applications in several fields of science and technology. In particular, their optical properties are governed by the characteristics of the dielectric function of the metal, its size and environment. This work analyses the separated contribution of free and bound electrons on the optical properties of copper Nps. Usually, the contribution of free electrons to the dielectric function is corrected for particle size through the modification of the damping constant, which is changed as usual introducing a term inversely proportional to the particle’s radius to account for the extra collisions with the boundary when the size approaches the electronic mean free path limit (about 10 nm). For bound electron contribution, the interband transitions from the d-band to the conduction band are considered together with the fact that the electronic density of states in the conduction band must be made size-dependent to account for the larger spacing between electronic energy levels as the particle decreases in size below 2 nm. Taking into account these specific modifications of free and bound electron contributions to the dielectric function, it was possible to fit the bulk complex dielectric function, and consequently, determine optical parameters and band energy values such as the coefficient for bound electron contribution Qbulk = 2 × 1024, gap energy Eg = 1.95 eV, Fermi energy EF = 2.15 eV, and damping constant for bound electrons γb = 1.15 × 1014 Hz. With both size-dependent contributions to the dielectric function, extinction spectra of copper Nps in the subnanometer radius range can be calculated using Mie’s theory and its behaviour with size can be analysed. These studies are applied to fit experimental extinction spectra of very small spherical core–shell Cu–Cu2O Nps generated by ultrafast laser ablation of a solid target in water. Theoretical calculations for subnanometric core radius are in excellent agreement with experimental results obtained from core–shell colloidal Nps. From the fitting, it is possible determining core radius and shell thickness of the Nps, showing that optical extinction spectroscopy is a good complementary technique to standard high-resolution electron microscopy for sizing spherical nanometric-subnanometric Nps. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-06-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/144996 |
url |
http://sedici.unlp.edu.ar/handle/10915/144996 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1557-1955 info:eu-repo/semantics/altIdentifier/issn/1557-1963 info:eu-repo/semantics/altIdentifier/doi/10.1007/s11468-012-9395-8 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf 341-348 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616204846628864 |
score |
13.070432 |