Aprendizaje automático para identificar poblaciones estelares en galaxias cercanas
- Autores
- Baume, Gustavo Luis; Rodríguez, María Jimena; Feinstein Baigorri, Carlos; Gularte Scarone, Ángela Erika
- Año de publicación
- 2021
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Se ha realizado un estudio de diferentes poblaciones estelares en galaxias cercanas. Este se ha basado en datos fotométricos multibanda obtenidos con el Hubble Space Telescope. En el análisis se han aplicado técnicas de aprendizaje automático no supervisado a fin de reconocer tanto las poblaciones estelares, como los grupos de estrellas en la población más joven. En ambos casos se han utilizado diferentes algoritmos de agrupamiento y se ha evaluado la eficiencia de los mismos. La metodología aplicada ha permitido llevar a cabo la tarea evitando el uso de criterios preconcebidos. Adicionalmente, se ha logrado caracterizar la distribución espacial de cada una de las poblaciones estelares considerando sus similitudes con una estructura de tipo fractal. De esta forma, ha sido posible identificar a las poblaciones mas jóvenes con una estructura jerárquica y a las poblaciones mas evolucionadas con distribuciones homogéneas, salvo fluctuaciones a muy gran escala.
A study of different stellar populations in nearby galaxies has been carried out. This has been based on multi-band photometric data obtained with the Hubble Space Telescope. In the analysis, unsupervised machine learning techniques have been applied in order to recognize both the stellar populations and the groups of stars in the youngest population. In both cases, different clustering algorithms have been used and their efficiency has been evaluated. The applied methodology has allowed to carry out the task without the need for preconceived criteria. Additionally, it has been possible to characterize the spatial distribution of each of the stellar populations considering their similarities with a fractal-type structure. In this way, it has been possible to identify the youngest populations with a hierarchical structure and the more evolved populations with homogeneous distributions, except for fluctuations on a very large scale.
Asociación Argentina de Astronomía - Materia
-
Ciencias Astronómicas
methods: data analysis
galaxies: photometry
galaxies: star clusters: general
galaxies: stellar content - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/167837
Ver los metadatos del registro completo
id |
SEDICI_9f2fc7c902974fed86a0333df1d451e6 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/167837 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Aprendizaje automático para identificar poblaciones estelares en galaxias cercanasBaume, Gustavo LuisRodríguez, María JimenaFeinstein Baigorri, CarlosGularte Scarone, Ángela ErikaCiencias Astronómicasmethods: data analysisgalaxies: photometrygalaxies: star clusters: generalgalaxies: stellar contentSe ha realizado un estudio de diferentes poblaciones estelares en galaxias cercanas. Este se ha basado en datos fotométricos multibanda obtenidos con el Hubble Space Telescope. En el análisis se han aplicado técnicas de aprendizaje automático no supervisado a fin de reconocer tanto las poblaciones estelares, como los grupos de estrellas en la población más joven. En ambos casos se han utilizado diferentes algoritmos de agrupamiento y se ha evaluado la eficiencia de los mismos. La metodología aplicada ha permitido llevar a cabo la tarea evitando el uso de criterios preconcebidos. Adicionalmente, se ha logrado caracterizar la distribución espacial de cada una de las poblaciones estelares considerando sus similitudes con una estructura de tipo fractal. De esta forma, ha sido posible identificar a las poblaciones mas jóvenes con una estructura jerárquica y a las poblaciones mas evolucionadas con distribuciones homogéneas, salvo fluctuaciones a muy gran escala.A study of different stellar populations in nearby galaxies has been carried out. This has been based on multi-band photometric data obtained with the Hubble Space Telescope. In the analysis, unsupervised machine learning techniques have been applied in order to recognize both the stellar populations and the groups of stars in the youngest population. In both cases, different clustering algorithms have been used and their efficiency has been evaluated. The applied methodology has allowed to carry out the task without the need for preconceived criteria. Additionally, it has been possible to characterize the spatial distribution of each of the stellar populations considering their similarities with a fractal-type structure. In this way, it has been possible to identify the youngest populations with a hierarchical structure and the more evolved populations with homogeneous distributions, except for fluctuations on a very large scale.Asociación Argentina de Astronomía2021info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf116-118http://sedici.unlp.edu.ar/handle/10915/167837spainfo:eu-repo/semantics/altIdentifier/issn/1669-9521info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:44:41Zoai:sedici.unlp.edu.ar:10915/167837Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:44:42.088SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Aprendizaje automático para identificar poblaciones estelares en galaxias cercanas |
title |
Aprendizaje automático para identificar poblaciones estelares en galaxias cercanas |
spellingShingle |
Aprendizaje automático para identificar poblaciones estelares en galaxias cercanas Baume, Gustavo Luis Ciencias Astronómicas methods: data analysis galaxies: photometry galaxies: star clusters: general galaxies: stellar content |
title_short |
Aprendizaje automático para identificar poblaciones estelares en galaxias cercanas |
title_full |
Aprendizaje automático para identificar poblaciones estelares en galaxias cercanas |
title_fullStr |
Aprendizaje automático para identificar poblaciones estelares en galaxias cercanas |
title_full_unstemmed |
Aprendizaje automático para identificar poblaciones estelares en galaxias cercanas |
title_sort |
Aprendizaje automático para identificar poblaciones estelares en galaxias cercanas |
dc.creator.none.fl_str_mv |
Baume, Gustavo Luis Rodríguez, María Jimena Feinstein Baigorri, Carlos Gularte Scarone, Ángela Erika |
author |
Baume, Gustavo Luis |
author_facet |
Baume, Gustavo Luis Rodríguez, María Jimena Feinstein Baigorri, Carlos Gularte Scarone, Ángela Erika |
author_role |
author |
author2 |
Rodríguez, María Jimena Feinstein Baigorri, Carlos Gularte Scarone, Ángela Erika |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Astronómicas methods: data analysis galaxies: photometry galaxies: star clusters: general galaxies: stellar content |
topic |
Ciencias Astronómicas methods: data analysis galaxies: photometry galaxies: star clusters: general galaxies: stellar content |
dc.description.none.fl_txt_mv |
Se ha realizado un estudio de diferentes poblaciones estelares en galaxias cercanas. Este se ha basado en datos fotométricos multibanda obtenidos con el Hubble Space Telescope. En el análisis se han aplicado técnicas de aprendizaje automático no supervisado a fin de reconocer tanto las poblaciones estelares, como los grupos de estrellas en la población más joven. En ambos casos se han utilizado diferentes algoritmos de agrupamiento y se ha evaluado la eficiencia de los mismos. La metodología aplicada ha permitido llevar a cabo la tarea evitando el uso de criterios preconcebidos. Adicionalmente, se ha logrado caracterizar la distribución espacial de cada una de las poblaciones estelares considerando sus similitudes con una estructura de tipo fractal. De esta forma, ha sido posible identificar a las poblaciones mas jóvenes con una estructura jerárquica y a las poblaciones mas evolucionadas con distribuciones homogéneas, salvo fluctuaciones a muy gran escala. A study of different stellar populations in nearby galaxies has been carried out. This has been based on multi-band photometric data obtained with the Hubble Space Telescope. In the analysis, unsupervised machine learning techniques have been applied in order to recognize both the stellar populations and the groups of stars in the youngest population. In both cases, different clustering algorithms have been used and their efficiency has been evaluated. The applied methodology has allowed to carry out the task without the need for preconceived criteria. Additionally, it has been possible to characterize the spatial distribution of each of the stellar populations considering their similarities with a fractal-type structure. In this way, it has been possible to identify the youngest populations with a hierarchical structure and the more evolved populations with homogeneous distributions, except for fluctuations on a very large scale. Asociación Argentina de Astronomía |
description |
Se ha realizado un estudio de diferentes poblaciones estelares en galaxias cercanas. Este se ha basado en datos fotométricos multibanda obtenidos con el Hubble Space Telescope. En el análisis se han aplicado técnicas de aprendizaje automático no supervisado a fin de reconocer tanto las poblaciones estelares, como los grupos de estrellas en la población más joven. En ambos casos se han utilizado diferentes algoritmos de agrupamiento y se ha evaluado la eficiencia de los mismos. La metodología aplicada ha permitido llevar a cabo la tarea evitando el uso de criterios preconcebidos. Adicionalmente, se ha logrado caracterizar la distribución espacial de cada una de las poblaciones estelares considerando sus similitudes con una estructura de tipo fractal. De esta forma, ha sido posible identificar a las poblaciones mas jóvenes con una estructura jerárquica y a las poblaciones mas evolucionadas con distribuciones homogéneas, salvo fluctuaciones a muy gran escala. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/167837 |
url |
http://sedici.unlp.edu.ar/handle/10915/167837 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1669-9521 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 116-118 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616314039042048 |
score |
13.070432 |