A MALDI-ToF mass spectrometry database for identification and classification of highly pathogenic bacteria
- Autores
- Bosch, María Alejandra Nieves
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Today, MALDI-ToF MS is an established technique to characterize and identify pathogenic bacteria. The technique is increasingly applied by clinical microbiological laboratories that use commercially available complete solutions, including spectra databases covering clinically relevant bacteria. Such databases are validated for clinical, or research applications, but are often less comprehensive concerning highly pathogenic bacteria (HPB). To improve MALDI-ToF MS diagnostics of HPB we initiated a program to develop protocols for reliable and MALDI-compatible microbial inactivation and to acquire mass spectra thereof many years ago. As a result of this project, databases covering HPB, closely related bacteria, and bacteria of clinical relevance have been made publicly available on platforms such as ZENODO. This publication in detail describes the most recent version of this database. The dataset contains a total of 11,055 spectra from altogether 1,601 microbial strains and 264 species and is primarily intended to improve the diagnosis of HPB. We hope that our MALDI-ToF MS data may also be a valuable resource for developing machine learning-based bacterial identification and classification methods.
La lista completa de autores que integran el documento puede consultarse en el archivo.
Centro de Investigación y Desarrollo en Fermentaciones Industriales - Materia
-
Biología
MALDI-ToF MS
Highly pathogenic bacteria
Spectral databases - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/189484
Ver los metadatos del registro completo
| id |
SEDICI_9e3209bdcf381fe7a940c0932a938709 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/189484 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
A MALDI-ToF mass spectrometry database for identification and classification of highly pathogenic bacteriaBosch, María Alejandra NievesBiologíaMALDI-ToF MSHighly pathogenic bacteriaSpectral databasesToday, MALDI-ToF MS is an established technique to characterize and identify pathogenic bacteria. The technique is increasingly applied by clinical microbiological laboratories that use commercially available complete solutions, including spectra databases covering clinically relevant bacteria. Such databases are validated for clinical, or research applications, but are often less comprehensive concerning highly pathogenic bacteria (HPB). To improve MALDI-ToF MS diagnostics of HPB we initiated a program to develop protocols for reliable and MALDI-compatible microbial inactivation and to acquire mass spectra thereof many years ago. As a result of this project, databases covering HPB, closely related bacteria, and bacteria of clinical relevance have been made publicly available on platforms such as ZENODO. This publication in detail describes the most recent version of this database. The dataset contains a total of 11,055 spectra from altogether 1,601 microbial strains and 264 species and is primarily intended to improve the diagnosis of HPB. We hope that our MALDI-ToF MS data may also be a valuable resource for developing machine learning-based bacterial identification and classification methods.La lista completa de autores que integran el documento puede consultarse en el archivo.Centro de Investigación y Desarrollo en Fermentaciones Industriales2025-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/189484enginfo:eu-repo/semantics/altIdentifier/issn/2052-4463info:eu-repo/semantics/altIdentifier/doi/10.1038/s41597-025-04504-zinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2026-01-07T13:36:27Zoai:sedici.unlp.edu.ar:10915/189484Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292026-01-07 13:36:28.215SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
A MALDI-ToF mass spectrometry database for identification and classification of highly pathogenic bacteria |
| title |
A MALDI-ToF mass spectrometry database for identification and classification of highly pathogenic bacteria |
| spellingShingle |
A MALDI-ToF mass spectrometry database for identification and classification of highly pathogenic bacteria Bosch, María Alejandra Nieves Biología MALDI-ToF MS Highly pathogenic bacteria Spectral databases |
| title_short |
A MALDI-ToF mass spectrometry database for identification and classification of highly pathogenic bacteria |
| title_full |
A MALDI-ToF mass spectrometry database for identification and classification of highly pathogenic bacteria |
| title_fullStr |
A MALDI-ToF mass spectrometry database for identification and classification of highly pathogenic bacteria |
| title_full_unstemmed |
A MALDI-ToF mass spectrometry database for identification and classification of highly pathogenic bacteria |
| title_sort |
A MALDI-ToF mass spectrometry database for identification and classification of highly pathogenic bacteria |
| dc.creator.none.fl_str_mv |
Bosch, María Alejandra Nieves |
| author |
Bosch, María Alejandra Nieves |
| author_facet |
Bosch, María Alejandra Nieves |
| author_role |
author |
| dc.subject.none.fl_str_mv |
Biología MALDI-ToF MS Highly pathogenic bacteria Spectral databases |
| topic |
Biología MALDI-ToF MS Highly pathogenic bacteria Spectral databases |
| dc.description.none.fl_txt_mv |
Today, MALDI-ToF MS is an established technique to characterize and identify pathogenic bacteria. The technique is increasingly applied by clinical microbiological laboratories that use commercially available complete solutions, including spectra databases covering clinically relevant bacteria. Such databases are validated for clinical, or research applications, but are often less comprehensive concerning highly pathogenic bacteria (HPB). To improve MALDI-ToF MS diagnostics of HPB we initiated a program to develop protocols for reliable and MALDI-compatible microbial inactivation and to acquire mass spectra thereof many years ago. As a result of this project, databases covering HPB, closely related bacteria, and bacteria of clinical relevance have been made publicly available on platforms such as ZENODO. This publication in detail describes the most recent version of this database. The dataset contains a total of 11,055 spectra from altogether 1,601 microbial strains and 264 species and is primarily intended to improve the diagnosis of HPB. We hope that our MALDI-ToF MS data may also be a valuable resource for developing machine learning-based bacterial identification and classification methods. La lista completa de autores que integran el documento puede consultarse en el archivo. Centro de Investigación y Desarrollo en Fermentaciones Industriales |
| description |
Today, MALDI-ToF MS is an established technique to characterize and identify pathogenic bacteria. The technique is increasingly applied by clinical microbiological laboratories that use commercially available complete solutions, including spectra databases covering clinically relevant bacteria. Such databases are validated for clinical, or research applications, but are often less comprehensive concerning highly pathogenic bacteria (HPB). To improve MALDI-ToF MS diagnostics of HPB we initiated a program to develop protocols for reliable and MALDI-compatible microbial inactivation and to acquire mass spectra thereof many years ago. As a result of this project, databases covering HPB, closely related bacteria, and bacteria of clinical relevance have been made publicly available on platforms such as ZENODO. This publication in detail describes the most recent version of this database. The dataset contains a total of 11,055 spectra from altogether 1,601 microbial strains and 264 species and is primarily intended to improve the diagnosis of HPB. We hope that our MALDI-ToF MS data may also be a valuable resource for developing machine learning-based bacterial identification and classification methods. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-02 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/189484 |
| url |
http://sedici.unlp.edu.ar/handle/10915/189484 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/2052-4463 info:eu-repo/semantics/altIdentifier/doi/10.1038/s41597-025-04504-z |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1853683335922974720 |
| score |
13.25844 |