Comparison of two MALDI-TOF MS systems for the identification of clinically relevant anaerobic bacteria in Argentina
- Autores
- Litterio, Mirta; Castello, Liliana; Venuta, María Elena; Abel, Sofía; Fernández Canigia, Liliana; Legaria, María Cristina; Rollet, Raquel; Vaustat, Claudia Daniela; Azula, Natalia; Fox, Bárbara; Otero, Silvina; Maldonado, María Laura; Mangieri, Natalia Alejandra; Rossetti, María Adelaida; Predari, Silvia Carla; Cejas, Daniela; Barberis, Claudia
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The aim of this study was to compare the performance of two MALDI-TOF MS systems in the identification of clinically relevant strict anaerobic bacteria. The 16S rRNA gene sequencing was the gold standard method when discrepancies or inconsistencies were observed between platforms. A total of 333 isolates were recovered from clinical samples of different centers in Buenos Aires City between 2016 and 2021. The isolates were identified in duplicate using two MALDI-TOF MS systems, BD Bruker Biotyper (Bruker Daltonics, Bremen, Germany) and Vitek MS (bioMèrieux, Marcy-l´Etoile, France). Using the Vitek MS system, the identification of anaerobic isolates yielded the following percentages: 65.5% (n: 218) at the species or species-complex level, 71.2% (n: 237) at the genus level, 29.4% (n: 98) with no identification and 5.1% (n: 17) with misidentification. Using the Bruker Biotyper system, the identification rates were as follows: 85.3% (n: 284) at the species or species-complex level, 89.7% (n: 299) at the genus level, 14.1% (n: 47) with no identification and 0.6% (n: 2) with misidentification. Differences in the performance of both methods were statistically significant (p-values <0.0001). In conclusion, MALDI-TOF MS systems speed up microbial identification and are particularly effective for slow-growing microorganisms, such as anaerobic bacteria, which are difficult to identify by traditional methods. In this study, the Bruker system showed greater accuracy than the Vitek system. In order to be truly effective, it is essential to update the databases of both systems by increasing the number of each main spectrum profile within the platforms.
Fil: Litterio, Mirta. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; Argentina
Fil: Castello, Liliana. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; Argentina
Fil: Venuta, María Elena. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; Argentina
Fil: Abel, Sofía. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; Argentina
Fil: Fernández Canigia, Liliana. Hospital Alemán; Argentina
Fil: Legaria, María Cristina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina
Fil: Rollet, Raquel. Gobierno de la Ciudad de Buenos Aires. Hospital de Infecciosas "Dr. Francisco Javier Muñiz"; Argentina
Fil: Vaustat, Claudia Daniela. Gobierno de la Ciudad de Buenos Aires. Hospital de Infecciosas "Dr. Francisco Javier Muñiz"; Argentina
Fil: Azula, Natalia. Centro de Educaciones Médicas e Investigación Clínica "Norberto Quirno"; Argentina
Fil: Fox, Bárbara. Hospital Alemán; Argentina
Fil: Otero, Silvina. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; Argentina
Fil: Maldonado, María Laura. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; Argentina
Fil: Mangieri, Natalia Alejandra. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; Argentina
Fil: Rossetti, María Adelaida. Gobierno de la Provincia de Buenos Aires. Hospital Interzonal General de Agudos Presidente Peron.; Argentina
Fil: Predari, Silvia Carla. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; Argentina
Fil: Cejas, Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología. Cátedra de Microbiología; Argentina
Fil: Barberis, Claudia. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina - Materia
-
MALDI-TOF MS
anaerobic bacteria
Argentina - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/232180
Ver los metadatos del registro completo
id |
CONICETDig_2d3df33e0579b6d9f38e66e63cf773cf |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/232180 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Comparison of two MALDI-TOF MS systems for the identification of clinically relevant anaerobic bacteria in ArgentinaComparación de dos sistemas MALDI-TOF MS en la identificación de bacterias anaerobias de relevancia clínica en ArgentinaLitterio, MirtaCastello, LilianaVenuta, María ElenaAbel, SofíaFernández Canigia, LilianaLegaria, María CristinaRollet, RaquelVaustat, Claudia DanielaAzula, NataliaFox, BárbaraOtero, SilvinaMaldonado, María LauraMangieri, Natalia AlejandraRossetti, María AdelaidaPredari, Silvia CarlaCejas, DanielaBarberis, ClaudiaMALDI-TOF MSanaerobic bacteriaArgentinahttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The aim of this study was to compare the performance of two MALDI-TOF MS systems in the identification of clinically relevant strict anaerobic bacteria. The 16S rRNA gene sequencing was the gold standard method when discrepancies or inconsistencies were observed between platforms. A total of 333 isolates were recovered from clinical samples of different centers in Buenos Aires City between 2016 and 2021. The isolates were identified in duplicate using two MALDI-TOF MS systems, BD Bruker Biotyper (Bruker Daltonics, Bremen, Germany) and Vitek MS (bioMèrieux, Marcy-l´Etoile, France). Using the Vitek MS system, the identification of anaerobic isolates yielded the following percentages: 65.5% (n: 218) at the species or species-complex level, 71.2% (n: 237) at the genus level, 29.4% (n: 98) with no identification and 5.1% (n: 17) with misidentification. Using the Bruker Biotyper system, the identification rates were as follows: 85.3% (n: 284) at the species or species-complex level, 89.7% (n: 299) at the genus level, 14.1% (n: 47) with no identification and 0.6% (n: 2) with misidentification. Differences in the performance of both methods were statistically significant (p-values <0.0001). In conclusion, MALDI-TOF MS systems speed up microbial identification and are particularly effective for slow-growing microorganisms, such as anaerobic bacteria, which are difficult to identify by traditional methods. In this study, the Bruker system showed greater accuracy than the Vitek system. In order to be truly effective, it is essential to update the databases of both systems by increasing the number of each main spectrum profile within the platforms.Fil: Litterio, Mirta. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; ArgentinaFil: Castello, Liliana. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; ArgentinaFil: Venuta, María Elena. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; ArgentinaFil: Abel, Sofía. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; ArgentinaFil: Fernández Canigia, Liliana. Hospital Alemán; ArgentinaFil: Legaria, María Cristina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Rollet, Raquel. Gobierno de la Ciudad de Buenos Aires. Hospital de Infecciosas "Dr. Francisco Javier Muñiz"; ArgentinaFil: Vaustat, Claudia Daniela. Gobierno de la Ciudad de Buenos Aires. Hospital de Infecciosas "Dr. Francisco Javier Muñiz"; ArgentinaFil: Azula, Natalia. Centro de Educaciones Médicas e Investigación Clínica "Norberto Quirno"; ArgentinaFil: Fox, Bárbara. Hospital Alemán; ArgentinaFil: Otero, Silvina. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; ArgentinaFil: Maldonado, María Laura. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; ArgentinaFil: Mangieri, Natalia Alejandra. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; ArgentinaFil: Rossetti, María Adelaida. Gobierno de la Provincia de Buenos Aires. Hospital Interzonal General de Agudos Presidente Peron.; ArgentinaFil: Predari, Silvia Carla. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; ArgentinaFil: Cejas, Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología. Cátedra de Microbiología; ArgentinaFil: Barberis, Claudia. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaAsociación Argentina de Microbiología2024-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/232180Litterio, Mirta; Castello, Liliana; Venuta, María Elena; Abel, Sofía; Fernández Canigia, Liliana; et al.; Comparison of two MALDI-TOF MS systems for the identification of clinically relevant anaerobic bacteria in Argentina; Asociación Argentina de Microbiología; Revista Argentina de Microbiología; 56; 1; 2-2024; 33-610325-75411851-7617CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0325754124000014info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ram.2023.12.001info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:06Zoai:ri.conicet.gov.ar:11336/232180instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:06.726CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Comparison of two MALDI-TOF MS systems for the identification of clinically relevant anaerobic bacteria in Argentina Comparación de dos sistemas MALDI-TOF MS en la identificación de bacterias anaerobias de relevancia clínica en Argentina |
title |
Comparison of two MALDI-TOF MS systems for the identification of clinically relevant anaerobic bacteria in Argentina |
spellingShingle |
Comparison of two MALDI-TOF MS systems for the identification of clinically relevant anaerobic bacteria in Argentina Litterio, Mirta MALDI-TOF MS anaerobic bacteria Argentina |
title_short |
Comparison of two MALDI-TOF MS systems for the identification of clinically relevant anaerobic bacteria in Argentina |
title_full |
Comparison of two MALDI-TOF MS systems for the identification of clinically relevant anaerobic bacteria in Argentina |
title_fullStr |
Comparison of two MALDI-TOF MS systems for the identification of clinically relevant anaerobic bacteria in Argentina |
title_full_unstemmed |
Comparison of two MALDI-TOF MS systems for the identification of clinically relevant anaerobic bacteria in Argentina |
title_sort |
Comparison of two MALDI-TOF MS systems for the identification of clinically relevant anaerobic bacteria in Argentina |
dc.creator.none.fl_str_mv |
Litterio, Mirta Castello, Liliana Venuta, María Elena Abel, Sofía Fernández Canigia, Liliana Legaria, María Cristina Rollet, Raquel Vaustat, Claudia Daniela Azula, Natalia Fox, Bárbara Otero, Silvina Maldonado, María Laura Mangieri, Natalia Alejandra Rossetti, María Adelaida Predari, Silvia Carla Cejas, Daniela Barberis, Claudia |
author |
Litterio, Mirta |
author_facet |
Litterio, Mirta Castello, Liliana Venuta, María Elena Abel, Sofía Fernández Canigia, Liliana Legaria, María Cristina Rollet, Raquel Vaustat, Claudia Daniela Azula, Natalia Fox, Bárbara Otero, Silvina Maldonado, María Laura Mangieri, Natalia Alejandra Rossetti, María Adelaida Predari, Silvia Carla Cejas, Daniela Barberis, Claudia |
author_role |
author |
author2 |
Castello, Liliana Venuta, María Elena Abel, Sofía Fernández Canigia, Liliana Legaria, María Cristina Rollet, Raquel Vaustat, Claudia Daniela Azula, Natalia Fox, Bárbara Otero, Silvina Maldonado, María Laura Mangieri, Natalia Alejandra Rossetti, María Adelaida Predari, Silvia Carla Cejas, Daniela Barberis, Claudia |
author2_role |
author author author author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
MALDI-TOF MS anaerobic bacteria Argentina |
topic |
MALDI-TOF MS anaerobic bacteria Argentina |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The aim of this study was to compare the performance of two MALDI-TOF MS systems in the identification of clinically relevant strict anaerobic bacteria. The 16S rRNA gene sequencing was the gold standard method when discrepancies or inconsistencies were observed between platforms. A total of 333 isolates were recovered from clinical samples of different centers in Buenos Aires City between 2016 and 2021. The isolates were identified in duplicate using two MALDI-TOF MS systems, BD Bruker Biotyper (Bruker Daltonics, Bremen, Germany) and Vitek MS (bioMèrieux, Marcy-l´Etoile, France). Using the Vitek MS system, the identification of anaerobic isolates yielded the following percentages: 65.5% (n: 218) at the species or species-complex level, 71.2% (n: 237) at the genus level, 29.4% (n: 98) with no identification and 5.1% (n: 17) with misidentification. Using the Bruker Biotyper system, the identification rates were as follows: 85.3% (n: 284) at the species or species-complex level, 89.7% (n: 299) at the genus level, 14.1% (n: 47) with no identification and 0.6% (n: 2) with misidentification. Differences in the performance of both methods were statistically significant (p-values <0.0001). In conclusion, MALDI-TOF MS systems speed up microbial identification and are particularly effective for slow-growing microorganisms, such as anaerobic bacteria, which are difficult to identify by traditional methods. In this study, the Bruker system showed greater accuracy than the Vitek system. In order to be truly effective, it is essential to update the databases of both systems by increasing the number of each main spectrum profile within the platforms. Fil: Litterio, Mirta. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; Argentina Fil: Castello, Liliana. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; Argentina Fil: Venuta, María Elena. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; Argentina Fil: Abel, Sofía. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; Argentina Fil: Fernández Canigia, Liliana. Hospital Alemán; Argentina Fil: Legaria, María Cristina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina Fil: Rollet, Raquel. Gobierno de la Ciudad de Buenos Aires. Hospital de Infecciosas "Dr. Francisco Javier Muñiz"; Argentina Fil: Vaustat, Claudia Daniela. Gobierno de la Ciudad de Buenos Aires. Hospital de Infecciosas "Dr. Francisco Javier Muñiz"; Argentina Fil: Azula, Natalia. Centro de Educaciones Médicas e Investigación Clínica "Norberto Quirno"; Argentina Fil: Fox, Bárbara. Hospital Alemán; Argentina Fil: Otero, Silvina. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; Argentina Fil: Maldonado, María Laura. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; Argentina Fil: Mangieri, Natalia Alejandra. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; Argentina Fil: Rossetti, María Adelaida. Gobierno de la Provincia de Buenos Aires. Hospital Interzonal General de Agudos Presidente Peron.; Argentina Fil: Predari, Silvia Carla. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; Argentina Fil: Cejas, Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología. Cátedra de Microbiología; Argentina Fil: Barberis, Claudia. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina |
description |
The aim of this study was to compare the performance of two MALDI-TOF MS systems in the identification of clinically relevant strict anaerobic bacteria. The 16S rRNA gene sequencing was the gold standard method when discrepancies or inconsistencies were observed between platforms. A total of 333 isolates were recovered from clinical samples of different centers in Buenos Aires City between 2016 and 2021. The isolates were identified in duplicate using two MALDI-TOF MS systems, BD Bruker Biotyper (Bruker Daltonics, Bremen, Germany) and Vitek MS (bioMèrieux, Marcy-l´Etoile, France). Using the Vitek MS system, the identification of anaerobic isolates yielded the following percentages: 65.5% (n: 218) at the species or species-complex level, 71.2% (n: 237) at the genus level, 29.4% (n: 98) with no identification and 5.1% (n: 17) with misidentification. Using the Bruker Biotyper system, the identification rates were as follows: 85.3% (n: 284) at the species or species-complex level, 89.7% (n: 299) at the genus level, 14.1% (n: 47) with no identification and 0.6% (n: 2) with misidentification. Differences in the performance of both methods were statistically significant (p-values <0.0001). In conclusion, MALDI-TOF MS systems speed up microbial identification and are particularly effective for slow-growing microorganisms, such as anaerobic bacteria, which are difficult to identify by traditional methods. In this study, the Bruker system showed greater accuracy than the Vitek system. In order to be truly effective, it is essential to update the databases of both systems by increasing the number of each main spectrum profile within the platforms. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/232180 Litterio, Mirta; Castello, Liliana; Venuta, María Elena; Abel, Sofía; Fernández Canigia, Liliana; et al.; Comparison of two MALDI-TOF MS systems for the identification of clinically relevant anaerobic bacteria in Argentina; Asociación Argentina de Microbiología; Revista Argentina de Microbiología; 56; 1; 2-2024; 33-61 0325-7541 1851-7617 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/232180 |
identifier_str_mv |
Litterio, Mirta; Castello, Liliana; Venuta, María Elena; Abel, Sofía; Fernández Canigia, Liliana; et al.; Comparison of two MALDI-TOF MS systems for the identification of clinically relevant anaerobic bacteria in Argentina; Asociación Argentina de Microbiología; Revista Argentina de Microbiología; 56; 1; 2-2024; 33-61 0325-7541 1851-7617 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0325754124000014 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ram.2023.12.001 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Asociación Argentina de Microbiología |
publisher.none.fl_str_mv |
Asociación Argentina de Microbiología |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613203719356416 |
score |
13.070432 |