Obtención de materiales para electrolitos sólidos de baterías de litio en capa delgada basados en Zirconato de Litio (Li2ZrO3) : Estudio, optimización y correlación de variables cr...

Autores
Orsetti, Nicolás Gabriel
Año de publicación
2022
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Actualmente, Argentina es el cuarto productor mundial de Li, luego de Australia, Chile y China. Sin embargo, la diferencia de precios entre la materia prima que se exporta y la batería que se fabrica en países extranjeros es abismal: una tonelada de Li2CO3 cuesta cerca de 6.000 U$D, mientras que una sola batería de auto cuesta más de 10.000 U$D. En este contexto, es fundamental generar conocimiento nacional vinculado a la cadena de valor agregado de este elemento y desarrollar estrategias escalables de diseño y procesamiento de materiales que lo contengan. Las baterías de ion-Li (BIL) son los sistemas de almacenamiento energético más utilizados. No obstante, las actuales BILs son propensas a explosiones e incendios en virtud de su contenido de líquidos orgánicos. En consecuencia, se proyecta que en un futuro cercano las baterías de Li de estado sólido (BLES) reemplazarán a las BILs convencionales y representarán una alternativa más segura y con mayor densidad energética. En este marco, el zirconato de Li (Li2ZrO3 ó LZO) es un potencial electrolito sólido para BLES debido a su gran conductividad iónica, estabilidad mecánica y estabilidad electroquímica. Este plan de trabajo incluyó una primera etapa de síntesis de LZO, mediante la reacción en estado sólido entre Li2CO3 y m-ZrO2. Como resultado, se obtuvo LZO puro y cristalino a partir del precursor tratado térmicamente en dos etapas: 800 °C/3h + 1000 °C/3h. Posteriormente, se continuó con la optimización del procesamiento coloidal del LZO para conformar piezas por slip casting. Se prepararon suspensiones acuosas de LZO, empleando un molino planetario de alta energía, y se conformaron discos a partir del colado de las suspensiones en moldes de yeso. Se obtuvieron piezas con máxima densidad en verde (63-67%) mediante el colado de mezclas compuestas por 63,1% p/p de LZO y 6,3% p/p de Dolapix CE64 (dispersante), y sometidas a 30 min de molienda. Esta optimización se logró mediante el análisis de la evolución de la viscosidad y del tamaño de partícula de las suspensiones con el tiempo de molienda, para diversas composiciones. Los resultados obtenidos representan un primer paso hacia la optimización del colado de cintas delgadas y flexibles por tape casting, lo cual se efectuará próximamente.En una tercera etapa, se estudió el proceso de sinterización de piezas de LZO, siguiendo detalladamente los procesos químicos involucrados a través de las técnicas de dilatometría, microscopía SEM, DRX y densidad (método de Arquímedes). Así, fue posible obtener materiales densos (93-95%) y de gran pureza aplicando un tratamiento térmico de 1200 °C/15 h a las piezas conformadas. Por último, se pretende caracterizar las propiedades eléctricas y mecánicas de los materiales obtenidos. Se correlacionará la influencia de las variables de las etapas previamente mencionadas sobre la microestructura y el comportamiento mecánico y electroquímico de las cintas, para su posible aplicación en BLES.
Carrera: Doctorado de la Facultad de Ciencias Exactas Área Química Tipo de beca: Beca Doctoral Año de inicio de beca: 2019 Año de finalización de beca: 2025 Organismo: CONICET Apellido, Nombre del Director/a/e: Suárez, Gustavo Apellido, Nombre del Codirector/a/e: Lorenzo, Gabriel Lugar de desarrollo: Centro de Tecnología de recursos Minerales y Cerámica (CETMIC) Áreas de conocimiento: Ingeniería en materiales Tipo de investigación: Básica
Facultad de Ciencias Exactas
Materia
Cs. de los Materiales
Zirconato de Litio
Procesamiento coloidal
Slip casting
Tape casting
Electrolito solido
Bles
Lithium zirconate
Colloidal processing
Slip casting
Tape casting
Solid state electrolyte
Sslb
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/145801

id SEDICI_9c4dec5a2cc3d06b7f78b668ca03b819
oai_identifier_str oai:sedici.unlp.edu.ar:10915/145801
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Obtención de materiales para electrolitos sólidos de baterías de litio en capa delgada basados en Zirconato de Litio (Li2ZrO3) : Estudio, optimización y correlación de variables críticas de procesamientoObtaining materials for solid electrolytes of thin film lithium batteries based on Lithium Zirconate (Li2ZrO3). Study, optimization and correlation of critical processing variablesOrsetti, Nicolás GabrielCs. de los MaterialesZirconato de LitioProcesamiento coloidalSlip castingTape castingElectrolito solidoBlesLithium zirconateColloidal processingSlip castingTape castingSolid state electrolyteSslbActualmente, Argentina es el cuarto productor mundial de Li, luego de Australia, Chile y China. Sin embargo, la diferencia de precios entre la materia prima que se exporta y la batería que se fabrica en países extranjeros es abismal: una tonelada de Li2CO3 cuesta cerca de 6.000 U$D, mientras que una sola batería de auto cuesta más de 10.000 U$D. En este contexto, es fundamental generar conocimiento nacional vinculado a la cadena de valor agregado de este elemento y desarrollar estrategias escalables de diseño y procesamiento de materiales que lo contengan. Las baterías de ion-Li (BIL) son los sistemas de almacenamiento energético más utilizados. No obstante, las actuales BILs son propensas a explosiones e incendios en virtud de su contenido de líquidos orgánicos. En consecuencia, se proyecta que en un futuro cercano las baterías de Li de estado sólido (BLES) reemplazarán a las BILs convencionales y representarán una alternativa más segura y con mayor densidad energética. En este marco, el zirconato de Li (Li2ZrO3 ó LZO) es un potencial electrolito sólido para BLES debido a su gran conductividad iónica, estabilidad mecánica y estabilidad electroquímica. Este plan de trabajo incluyó una primera etapa de síntesis de LZO, mediante la reacción en estado sólido entre Li2CO3 y m-ZrO2. Como resultado, se obtuvo LZO puro y cristalino a partir del precursor tratado térmicamente en dos etapas: 800 °C/3h + 1000 °C/3h. Posteriormente, se continuó con la optimización del procesamiento coloidal del LZO para conformar piezas por slip casting. Se prepararon suspensiones acuosas de LZO, empleando un molino planetario de alta energía, y se conformaron discos a partir del colado de las suspensiones en moldes de yeso. Se obtuvieron piezas con máxima densidad en verde (63-67%) mediante el colado de mezclas compuestas por 63,1% p/p de LZO y 6,3% p/p de Dolapix CE64 (dispersante), y sometidas a 30 min de molienda. Esta optimización se logró mediante el análisis de la evolución de la viscosidad y del tamaño de partícula de las suspensiones con el tiempo de molienda, para diversas composiciones. Los resultados obtenidos representan un primer paso hacia la optimización del colado de cintas delgadas y flexibles por tape casting, lo cual se efectuará próximamente.En una tercera etapa, se estudió el proceso de sinterización de piezas de LZO, siguiendo detalladamente los procesos químicos involucrados a través de las técnicas de dilatometría, microscopía SEM, DRX y densidad (método de Arquímedes). Así, fue posible obtener materiales densos (93-95%) y de gran pureza aplicando un tratamiento térmico de 1200 °C/15 h a las piezas conformadas. Por último, se pretende caracterizar las propiedades eléctricas y mecánicas de los materiales obtenidos. Se correlacionará la influencia de las variables de las etapas previamente mencionadas sobre la microestructura y el comportamiento mecánico y electroquímico de las cintas, para su posible aplicación en BLES.Carrera: Doctorado de la Facultad de Ciencias Exactas Área Química Tipo de beca: Beca Doctoral Año de inicio de beca: 2019 Año de finalización de beca: 2025 Organismo: CONICET Apellido, Nombre del Director/a/e: Suárez, Gustavo Apellido, Nombre del Codirector/a/e: Lorenzo, Gabriel Lugar de desarrollo: Centro de Tecnología de recursos Minerales y Cerámica (CETMIC) Áreas de conocimiento: Ingeniería en materiales Tipo de investigación: BásicaFacultad de Ciencias Exactas2022-11-23info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/145801spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:37:08Zoai:sedici.unlp.edu.ar:10915/145801Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:37:08.933SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Obtención de materiales para electrolitos sólidos de baterías de litio en capa delgada basados en Zirconato de Litio (Li2ZrO3) : Estudio, optimización y correlación de variables críticas de procesamiento
Obtaining materials for solid electrolytes of thin film lithium batteries based on Lithium Zirconate (Li2ZrO3). Study, optimization and correlation of critical processing variables
title Obtención de materiales para electrolitos sólidos de baterías de litio en capa delgada basados en Zirconato de Litio (Li2ZrO3) : Estudio, optimización y correlación de variables críticas de procesamiento
spellingShingle Obtención de materiales para electrolitos sólidos de baterías de litio en capa delgada basados en Zirconato de Litio (Li2ZrO3) : Estudio, optimización y correlación de variables críticas de procesamiento
Orsetti, Nicolás Gabriel
Cs. de los Materiales
Zirconato de Litio
Procesamiento coloidal
Slip casting
Tape casting
Electrolito solido
Bles
Lithium zirconate
Colloidal processing
Slip casting
Tape casting
Solid state electrolyte
Sslb
title_short Obtención de materiales para electrolitos sólidos de baterías de litio en capa delgada basados en Zirconato de Litio (Li2ZrO3) : Estudio, optimización y correlación de variables críticas de procesamiento
title_full Obtención de materiales para electrolitos sólidos de baterías de litio en capa delgada basados en Zirconato de Litio (Li2ZrO3) : Estudio, optimización y correlación de variables críticas de procesamiento
title_fullStr Obtención de materiales para electrolitos sólidos de baterías de litio en capa delgada basados en Zirconato de Litio (Li2ZrO3) : Estudio, optimización y correlación de variables críticas de procesamiento
title_full_unstemmed Obtención de materiales para electrolitos sólidos de baterías de litio en capa delgada basados en Zirconato de Litio (Li2ZrO3) : Estudio, optimización y correlación de variables críticas de procesamiento
title_sort Obtención de materiales para electrolitos sólidos de baterías de litio en capa delgada basados en Zirconato de Litio (Li2ZrO3) : Estudio, optimización y correlación de variables críticas de procesamiento
dc.creator.none.fl_str_mv Orsetti, Nicolás Gabriel
author Orsetti, Nicolás Gabriel
author_facet Orsetti, Nicolás Gabriel
author_role author
dc.subject.none.fl_str_mv Cs. de los Materiales
Zirconato de Litio
Procesamiento coloidal
Slip casting
Tape casting
Electrolito solido
Bles
Lithium zirconate
Colloidal processing
Slip casting
Tape casting
Solid state electrolyte
Sslb
topic Cs. de los Materiales
Zirconato de Litio
Procesamiento coloidal
Slip casting
Tape casting
Electrolito solido
Bles
Lithium zirconate
Colloidal processing
Slip casting
Tape casting
Solid state electrolyte
Sslb
dc.description.none.fl_txt_mv Actualmente, Argentina es el cuarto productor mundial de Li, luego de Australia, Chile y China. Sin embargo, la diferencia de precios entre la materia prima que se exporta y la batería que se fabrica en países extranjeros es abismal: una tonelada de Li2CO3 cuesta cerca de 6.000 U$D, mientras que una sola batería de auto cuesta más de 10.000 U$D. En este contexto, es fundamental generar conocimiento nacional vinculado a la cadena de valor agregado de este elemento y desarrollar estrategias escalables de diseño y procesamiento de materiales que lo contengan. Las baterías de ion-Li (BIL) son los sistemas de almacenamiento energético más utilizados. No obstante, las actuales BILs son propensas a explosiones e incendios en virtud de su contenido de líquidos orgánicos. En consecuencia, se proyecta que en un futuro cercano las baterías de Li de estado sólido (BLES) reemplazarán a las BILs convencionales y representarán una alternativa más segura y con mayor densidad energética. En este marco, el zirconato de Li (Li2ZrO3 ó LZO) es un potencial electrolito sólido para BLES debido a su gran conductividad iónica, estabilidad mecánica y estabilidad electroquímica. Este plan de trabajo incluyó una primera etapa de síntesis de LZO, mediante la reacción en estado sólido entre Li2CO3 y m-ZrO2. Como resultado, se obtuvo LZO puro y cristalino a partir del precursor tratado térmicamente en dos etapas: 800 °C/3h + 1000 °C/3h. Posteriormente, se continuó con la optimización del procesamiento coloidal del LZO para conformar piezas por slip casting. Se prepararon suspensiones acuosas de LZO, empleando un molino planetario de alta energía, y se conformaron discos a partir del colado de las suspensiones en moldes de yeso. Se obtuvieron piezas con máxima densidad en verde (63-67%) mediante el colado de mezclas compuestas por 63,1% p/p de LZO y 6,3% p/p de Dolapix CE64 (dispersante), y sometidas a 30 min de molienda. Esta optimización se logró mediante el análisis de la evolución de la viscosidad y del tamaño de partícula de las suspensiones con el tiempo de molienda, para diversas composiciones. Los resultados obtenidos representan un primer paso hacia la optimización del colado de cintas delgadas y flexibles por tape casting, lo cual se efectuará próximamente.En una tercera etapa, se estudió el proceso de sinterización de piezas de LZO, siguiendo detalladamente los procesos químicos involucrados a través de las técnicas de dilatometría, microscopía SEM, DRX y densidad (método de Arquímedes). Así, fue posible obtener materiales densos (93-95%) y de gran pureza aplicando un tratamiento térmico de 1200 °C/15 h a las piezas conformadas. Por último, se pretende caracterizar las propiedades eléctricas y mecánicas de los materiales obtenidos. Se correlacionará la influencia de las variables de las etapas previamente mencionadas sobre la microestructura y el comportamiento mecánico y electroquímico de las cintas, para su posible aplicación en BLES.
Carrera: Doctorado de la Facultad de Ciencias Exactas Área Química Tipo de beca: Beca Doctoral Año de inicio de beca: 2019 Año de finalización de beca: 2025 Organismo: CONICET Apellido, Nombre del Director/a/e: Suárez, Gustavo Apellido, Nombre del Codirector/a/e: Lorenzo, Gabriel Lugar de desarrollo: Centro de Tecnología de recursos Minerales y Cerámica (CETMIC) Áreas de conocimiento: Ingeniería en materiales Tipo de investigación: Básica
Facultad de Ciencias Exactas
description Actualmente, Argentina es el cuarto productor mundial de Li, luego de Australia, Chile y China. Sin embargo, la diferencia de precios entre la materia prima que se exporta y la batería que se fabrica en países extranjeros es abismal: una tonelada de Li2CO3 cuesta cerca de 6.000 U$D, mientras que una sola batería de auto cuesta más de 10.000 U$D. En este contexto, es fundamental generar conocimiento nacional vinculado a la cadena de valor agregado de este elemento y desarrollar estrategias escalables de diseño y procesamiento de materiales que lo contengan. Las baterías de ion-Li (BIL) son los sistemas de almacenamiento energético más utilizados. No obstante, las actuales BILs son propensas a explosiones e incendios en virtud de su contenido de líquidos orgánicos. En consecuencia, se proyecta que en un futuro cercano las baterías de Li de estado sólido (BLES) reemplazarán a las BILs convencionales y representarán una alternativa más segura y con mayor densidad energética. En este marco, el zirconato de Li (Li2ZrO3 ó LZO) es un potencial electrolito sólido para BLES debido a su gran conductividad iónica, estabilidad mecánica y estabilidad electroquímica. Este plan de trabajo incluyó una primera etapa de síntesis de LZO, mediante la reacción en estado sólido entre Li2CO3 y m-ZrO2. Como resultado, se obtuvo LZO puro y cristalino a partir del precursor tratado térmicamente en dos etapas: 800 °C/3h + 1000 °C/3h. Posteriormente, se continuó con la optimización del procesamiento coloidal del LZO para conformar piezas por slip casting. Se prepararon suspensiones acuosas de LZO, empleando un molino planetario de alta energía, y se conformaron discos a partir del colado de las suspensiones en moldes de yeso. Se obtuvieron piezas con máxima densidad en verde (63-67%) mediante el colado de mezclas compuestas por 63,1% p/p de LZO y 6,3% p/p de Dolapix CE64 (dispersante), y sometidas a 30 min de molienda. Esta optimización se logró mediante el análisis de la evolución de la viscosidad y del tamaño de partícula de las suspensiones con el tiempo de molienda, para diversas composiciones. Los resultados obtenidos representan un primer paso hacia la optimización del colado de cintas delgadas y flexibles por tape casting, lo cual se efectuará próximamente.En una tercera etapa, se estudió el proceso de sinterización de piezas de LZO, siguiendo detalladamente los procesos químicos involucrados a través de las técnicas de dilatometría, microscopía SEM, DRX y densidad (método de Arquímedes). Así, fue posible obtener materiales densos (93-95%) y de gran pureza aplicando un tratamiento térmico de 1200 °C/15 h a las piezas conformadas. Por último, se pretende caracterizar las propiedades eléctricas y mecánicas de los materiales obtenidos. Se correlacionará la influencia de las variables de las etapas previamente mencionadas sobre la microestructura y el comportamiento mecánico y electroquímico de las cintas, para su posible aplicación en BLES.
publishDate 2022
dc.date.none.fl_str_mv 2022-11-23
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/145801
url http://sedici.unlp.edu.ar/handle/10915/145801
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616249053544448
score 13.070432