Time of Flight Image Segmentation through Co-Regularized Spectral Clustering
- Autores
- Lorenti, Luciano; Giacomantone, Javier
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Time of Flight (TOF) cameras generate two simultaneous images, one for intensity and one for range. This allows tackling segmentation problems where the information pertaining to intensity or range alone is not enough to extract objects of interest from a 3D scene. In this paper, we present a spectral segmentation method that combines information from both images. By modifying the affinity matrix of each of the images based on the other, the segmentation of objects in the scene is improved. The proposed method exploits two mechanisms, one for reducing the computational demand when calculating the eigenvectors for each matrix, and another for improving segmentation performance. The experimental results obtained with two sets of real images are presented and used to assess the proposed method.
Publicado en Feierherd, Guillermo; Pesado, Patricia; Spositto, Osvaldo (eds.). Computer Science & Technology Series. XX Argentine Congress of Computer Science. Selected papers. La Plata, Editorial de la Universidad Nacional de La Plata, 2015.
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
segmentation
range images
Time of Flight Cameras - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/54575
Ver los metadatos del registro completo
id |
SEDICI_9c20f58bcc7aaac5a77f9db59ba63c79 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/54575 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Time of Flight Image Segmentation through Co-Regularized Spectral ClusteringLorenti, LucianoGiacomantone, JavierCiencias Informáticassegmentationrange imagesTime of Flight CamerasTime of Flight (TOF) cameras generate two simultaneous images, one for intensity and one for range. This allows tackling segmentation problems where the information pertaining to intensity or range alone is not enough to extract objects of interest from a 3D scene. In this paper, we present a spectral segmentation method that combines information from both images. By modifying the affinity matrix of each of the images based on the other, the segmentation of objects in the scene is improved. The proposed method exploits two mechanisms, one for reducing the computational demand when calculating the eigenvectors for each matrix, and another for improving segmentation performance. The experimental results obtained with two sets of real images are presented and used to assess the proposed method.Publicado en Feierherd, Guillermo; Pesado, Patricia; Spositto, Osvaldo (eds.). <i>Computer Science & Technology Series. XX Argentine Congress of Computer Science. Selected papers</i>. La Plata, Editorial de la Universidad Nacional de La Plata, 2015.Red de Universidades con Carreras en Informática (RedUNCI)2014info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf101-110http://sedici.unlp.edu.ar/handle/10915/54575enginfo:eu-repo/semantics/altIdentifier/isbn/978-987-1985-71-5info:eu-repo/semantics/reference/hdl/10915/48825info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:38:05Zoai:sedici.unlp.edu.ar:10915/54575Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:38:05.924SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Time of Flight Image Segmentation through Co-Regularized Spectral Clustering |
title |
Time of Flight Image Segmentation through Co-Regularized Spectral Clustering |
spellingShingle |
Time of Flight Image Segmentation through Co-Regularized Spectral Clustering Lorenti, Luciano Ciencias Informáticas segmentation range images Time of Flight Cameras |
title_short |
Time of Flight Image Segmentation through Co-Regularized Spectral Clustering |
title_full |
Time of Flight Image Segmentation through Co-Regularized Spectral Clustering |
title_fullStr |
Time of Flight Image Segmentation through Co-Regularized Spectral Clustering |
title_full_unstemmed |
Time of Flight Image Segmentation through Co-Regularized Spectral Clustering |
title_sort |
Time of Flight Image Segmentation through Co-Regularized Spectral Clustering |
dc.creator.none.fl_str_mv |
Lorenti, Luciano Giacomantone, Javier |
author |
Lorenti, Luciano |
author_facet |
Lorenti, Luciano Giacomantone, Javier |
author_role |
author |
author2 |
Giacomantone, Javier |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas segmentation range images Time of Flight Cameras |
topic |
Ciencias Informáticas segmentation range images Time of Flight Cameras |
dc.description.none.fl_txt_mv |
Time of Flight (TOF) cameras generate two simultaneous images, one for intensity and one for range. This allows tackling segmentation problems where the information pertaining to intensity or range alone is not enough to extract objects of interest from a 3D scene. In this paper, we present a spectral segmentation method that combines information from both images. By modifying the affinity matrix of each of the images based on the other, the segmentation of objects in the scene is improved. The proposed method exploits two mechanisms, one for reducing the computational demand when calculating the eigenvectors for each matrix, and another for improving segmentation performance. The experimental results obtained with two sets of real images are presented and used to assess the proposed method. Publicado en Feierherd, Guillermo; Pesado, Patricia; Spositto, Osvaldo (eds.). <i>Computer Science & Technology Series. XX Argentine Congress of Computer Science. Selected papers</i>. La Plata, Editorial de la Universidad Nacional de La Plata, 2015. Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Time of Flight (TOF) cameras generate two simultaneous images, one for intensity and one for range. This allows tackling segmentation problems where the information pertaining to intensity or range alone is not enough to extract objects of interest from a 3D scene. In this paper, we present a spectral segmentation method that combines information from both images. By modifying the affinity matrix of each of the images based on the other, the segmentation of objects in the scene is improved. The proposed method exploits two mechanisms, one for reducing the computational demand when calculating the eigenvectors for each matrix, and another for improving segmentation performance. The experimental results obtained with two sets of real images are presented and used to assess the proposed method. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/54575 |
url |
http://sedici.unlp.edu.ar/handle/10915/54575 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-987-1985-71-5 info:eu-repo/semantics/reference/hdl/10915/48825 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 101-110 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260239990128640 |
score |
13.13397 |