Combining incest prevention and multiplicity in evolutionary algorithms
- Autores
- Minetti, Gabriela F.; Salto, Carolina; Alfonso, Hugo; Gallard, Raúl Hector
- Año de publicación
- 2001
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Evolutionary Computation is an emergent field, which provides new heuristics to function optimization where traditional approaches make the problem computationally intractable. Exploration and exploitation of solution in the problem space are main issues affecting the performance of an evolutionary algorithm. Current enhancements attempt to balance exploitation and exploration to avoid premature convergence during the search process. Multiple parents multiple crossovers and incest prevention are three different techniques that when combined showed a substantial benefit: besides minimizing the risk of premature convergence, the final population is concentrated nearby the optimal solution. This behaviour is an important aid provided by the evolutionary process when applications require a set of alternative solutions to face system dynamics. This paper shows the design, implementation and partial performance results when incest prevention is combined with multiple crossovers on multiple parents for difficult multimodal optimization.
Eje: Computación evolutiva
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Scheduling
Evolución
Algorithms
Genetic Algorithms
Multiple Crossovers
Multiple Parents
Incest Prevention
Cluster Allocation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/23522
Ver los metadatos del registro completo
id |
SEDICI_9bcf709307c71a891c26ef0d5f8a8ca2 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/23522 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Combining incest prevention and multiplicity in evolutionary algorithmsMinetti, Gabriela F.Salto, CarolinaAlfonso, HugoGallard, Raúl HectorCiencias InformáticasSchedulingEvoluciónAlgorithmsGenetic AlgorithmsMultiple CrossoversMultiple ParentsIncest PreventionCluster AllocationEvolutionary Computation is an emergent field, which provides new heuristics to function optimization where traditional approaches make the problem computationally intractable. Exploration and exploitation of solution in the problem space are main issues affecting the performance of an evolutionary algorithm. Current enhancements attempt to balance exploitation and exploration to avoid premature convergence during the search process. Multiple parents multiple crossovers and incest prevention are three different techniques that when combined showed a substantial benefit: besides minimizing the risk of premature convergence, the final population is concentrated nearby the optimal solution. This behaviour is an important aid provided by the evolutionary process when applications require a set of alternative solutions to face system dynamics. This paper shows the design, implementation and partial performance results when incest prevention is combined with multiple crossovers on multiple parents for difficult multimodal optimization.Eje: Computación evolutivaRed de Universidades con Carreras en Informática (RedUNCI)2001-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23522enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T10:48:05Zoai:sedici.unlp.edu.ar:10915/23522Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 10:48:05.871SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Combining incest prevention and multiplicity in evolutionary algorithms |
title |
Combining incest prevention and multiplicity in evolutionary algorithms |
spellingShingle |
Combining incest prevention and multiplicity in evolutionary algorithms Minetti, Gabriela F. Ciencias Informáticas Scheduling Evolución Algorithms Genetic Algorithms Multiple Crossovers Multiple Parents Incest Prevention Cluster Allocation |
title_short |
Combining incest prevention and multiplicity in evolutionary algorithms |
title_full |
Combining incest prevention and multiplicity in evolutionary algorithms |
title_fullStr |
Combining incest prevention and multiplicity in evolutionary algorithms |
title_full_unstemmed |
Combining incest prevention and multiplicity in evolutionary algorithms |
title_sort |
Combining incest prevention and multiplicity in evolutionary algorithms |
dc.creator.none.fl_str_mv |
Minetti, Gabriela F. Salto, Carolina Alfonso, Hugo Gallard, Raúl Hector |
author |
Minetti, Gabriela F. |
author_facet |
Minetti, Gabriela F. Salto, Carolina Alfonso, Hugo Gallard, Raúl Hector |
author_role |
author |
author2 |
Salto, Carolina Alfonso, Hugo Gallard, Raúl Hector |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Scheduling Evolución Algorithms Genetic Algorithms Multiple Crossovers Multiple Parents Incest Prevention Cluster Allocation |
topic |
Ciencias Informáticas Scheduling Evolución Algorithms Genetic Algorithms Multiple Crossovers Multiple Parents Incest Prevention Cluster Allocation |
dc.description.none.fl_txt_mv |
Evolutionary Computation is an emergent field, which provides new heuristics to function optimization where traditional approaches make the problem computationally intractable. Exploration and exploitation of solution in the problem space are main issues affecting the performance of an evolutionary algorithm. Current enhancements attempt to balance exploitation and exploration to avoid premature convergence during the search process. Multiple parents multiple crossovers and incest prevention are three different techniques that when combined showed a substantial benefit: besides minimizing the risk of premature convergence, the final population is concentrated nearby the optimal solution. This behaviour is an important aid provided by the evolutionary process when applications require a set of alternative solutions to face system dynamics. This paper shows the design, implementation and partial performance results when incest prevention is combined with multiple crossovers on multiple parents for difficult multimodal optimization. Eje: Computación evolutiva Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Evolutionary Computation is an emergent field, which provides new heuristics to function optimization where traditional approaches make the problem computationally intractable. Exploration and exploitation of solution in the problem space are main issues affecting the performance of an evolutionary algorithm. Current enhancements attempt to balance exploitation and exploration to avoid premature convergence during the search process. Multiple parents multiple crossovers and incest prevention are three different techniques that when combined showed a substantial benefit: besides minimizing the risk of premature convergence, the final population is concentrated nearby the optimal solution. This behaviour is an important aid provided by the evolutionary process when applications require a set of alternative solutions to face system dynamics. This paper shows the design, implementation and partial performance results when incest prevention is combined with multiple crossovers on multiple parents for difficult multimodal optimization. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/23522 |
url |
http://sedici.unlp.edu.ar/handle/10915/23522 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846063908354260992 |
score |
13.22299 |