Combining incest prevention and multiplicity in evolutionary algorithms

Autores
Minetti, Gabriela F.; Salto, Carolina; Alfonso, Hugo; Gallard, Raúl Hector
Año de publicación
2001
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Evolutionary Computation is an emergent field, which provides new heuristics to function optimization where traditional approaches make the problem computationally intractable. Exploration and exploitation of solution in the problem space are main issues affecting the performance of an evolutionary algorithm. Current enhancements attempt to balance exploitation and exploration to avoid premature convergence during the search process. Multiple parents multiple crossovers and incest prevention are three different techniques that when combined showed a substantial benefit: besides minimizing the risk of premature convergence, the final population is concentrated nearby the optimal solution. This behaviour is an important aid provided by the evolutionary process when applications require a set of alternative solutions to face system dynamics. This paper shows the design, implementation and partial performance results when incest prevention is combined with multiple crossovers on multiple parents for difficult multimodal optimization.
Eje: Computación evolutiva
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Scheduling
Evolución
Algorithms
Genetic Algorithms
Multiple Crossovers
Multiple Parents
Incest Prevention
Cluster Allocation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/23522

id SEDICI_9bcf709307c71a891c26ef0d5f8a8ca2
oai_identifier_str oai:sedici.unlp.edu.ar:10915/23522
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Combining incest prevention and multiplicity in evolutionary algorithmsMinetti, Gabriela F.Salto, CarolinaAlfonso, HugoGallard, Raúl HectorCiencias InformáticasSchedulingEvoluciónAlgorithmsGenetic AlgorithmsMultiple CrossoversMultiple ParentsIncest PreventionCluster AllocationEvolutionary Computation is an emergent field, which provides new heuristics to function optimization where traditional approaches make the problem computationally intractable. Exploration and exploitation of solution in the problem space are main issues affecting the performance of an evolutionary algorithm. Current enhancements attempt to balance exploitation and exploration to avoid premature convergence during the search process. Multiple parents multiple crossovers and incest prevention are three different techniques that when combined showed a substantial benefit: besides minimizing the risk of premature convergence, the final population is concentrated nearby the optimal solution. This behaviour is an important aid provided by the evolutionary process when applications require a set of alternative solutions to face system dynamics. This paper shows the design, implementation and partial performance results when incest prevention is combined with multiple crossovers on multiple parents for difficult multimodal optimization.Eje: Computación evolutivaRed de Universidades con Carreras en Informática (RedUNCI)2001-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23522enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T10:48:05Zoai:sedici.unlp.edu.ar:10915/23522Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 10:48:05.871SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Combining incest prevention and multiplicity in evolutionary algorithms
title Combining incest prevention and multiplicity in evolutionary algorithms
spellingShingle Combining incest prevention and multiplicity in evolutionary algorithms
Minetti, Gabriela F.
Ciencias Informáticas
Scheduling
Evolución
Algorithms
Genetic Algorithms
Multiple Crossovers
Multiple Parents
Incest Prevention
Cluster Allocation
title_short Combining incest prevention and multiplicity in evolutionary algorithms
title_full Combining incest prevention and multiplicity in evolutionary algorithms
title_fullStr Combining incest prevention and multiplicity in evolutionary algorithms
title_full_unstemmed Combining incest prevention and multiplicity in evolutionary algorithms
title_sort Combining incest prevention and multiplicity in evolutionary algorithms
dc.creator.none.fl_str_mv Minetti, Gabriela F.
Salto, Carolina
Alfonso, Hugo
Gallard, Raúl Hector
author Minetti, Gabriela F.
author_facet Minetti, Gabriela F.
Salto, Carolina
Alfonso, Hugo
Gallard, Raúl Hector
author_role author
author2 Salto, Carolina
Alfonso, Hugo
Gallard, Raúl Hector
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Scheduling
Evolución
Algorithms
Genetic Algorithms
Multiple Crossovers
Multiple Parents
Incest Prevention
Cluster Allocation
topic Ciencias Informáticas
Scheduling
Evolución
Algorithms
Genetic Algorithms
Multiple Crossovers
Multiple Parents
Incest Prevention
Cluster Allocation
dc.description.none.fl_txt_mv Evolutionary Computation is an emergent field, which provides new heuristics to function optimization where traditional approaches make the problem computationally intractable. Exploration and exploitation of solution in the problem space are main issues affecting the performance of an evolutionary algorithm. Current enhancements attempt to balance exploitation and exploration to avoid premature convergence during the search process. Multiple parents multiple crossovers and incest prevention are three different techniques that when combined showed a substantial benefit: besides minimizing the risk of premature convergence, the final population is concentrated nearby the optimal solution. This behaviour is an important aid provided by the evolutionary process when applications require a set of alternative solutions to face system dynamics. This paper shows the design, implementation and partial performance results when incest prevention is combined with multiple crossovers on multiple parents for difficult multimodal optimization.
Eje: Computación evolutiva
Red de Universidades con Carreras en Informática (RedUNCI)
description Evolutionary Computation is an emergent field, which provides new heuristics to function optimization where traditional approaches make the problem computationally intractable. Exploration and exploitation of solution in the problem space are main issues affecting the performance of an evolutionary algorithm. Current enhancements attempt to balance exploitation and exploration to avoid premature convergence during the search process. Multiple parents multiple crossovers and incest prevention are three different techniques that when combined showed a substantial benefit: besides minimizing the risk of premature convergence, the final population is concentrated nearby the optimal solution. This behaviour is an important aid provided by the evolutionary process when applications require a set of alternative solutions to face system dynamics. This paper shows the design, implementation and partial performance results when incest prevention is combined with multiple crossovers on multiple parents for difficult multimodal optimization.
publishDate 2001
dc.date.none.fl_str_mv 2001-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/23522
url http://sedici.unlp.edu.ar/handle/10915/23522
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846063908354260992
score 13.22299