Parameter estimation of an empirical kinetic model for CO preferential oxidation

Autores
Moreno, M. Susana; López, Eduardo; Divins, Nuria J.; Llorca, Jordi
Año de publicación
2014
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
In this work the application of genetic algorithms (GA) for solving the parameter estimation problem in a nonlinear empirical kinetic model for CO preferential oxidation is reported. Kinetic models with nonlinear rate equations often suffer of considerable parameter uncertainty which can lead to inaccurate predictions. Here, after the parameter vector is obtained, a statistical study is performed in order to show how accurate the parameter estimations are determined. The unknown model parameters are obtained by fitting the model predictions against our laboratory observations measured under a range of experimental conditions using a novel Au/TiO2 catalyst.
Sociedad Argentina de Informática e Investigación Operativa (SADIO)
Materia
Ciencias Informáticas
Algorithms
CO-PrOx
parameter estimation
confidence intervals
confidence regions
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/3.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/41696

id SEDICI_9adcdb4ac79189a345f0e13b0531e0c0
oai_identifier_str oai:sedici.unlp.edu.ar:10915/41696
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Parameter estimation of an empirical kinetic model for CO preferential oxidationMoreno, M. SusanaLópez, EduardoDivins, Nuria J.Llorca, JordiCiencias InformáticasAlgorithmsCO-PrOxparameter estimationconfidence intervalsconfidence regionsIn this work the application of genetic algorithms (GA) for solving the parameter estimation problem in a nonlinear empirical kinetic model for CO preferential oxidation is reported. Kinetic models with nonlinear rate equations often suffer of considerable parameter uncertainty which can lead to inaccurate predictions. Here, after the parameter vector is obtained, a statistical study is performed in order to show how accurate the parameter estimations are determined. The unknown model parameters are obtained by fitting the model predictions against our laboratory observations measured under a range of experimental conditions using a novel Au/TiO<SUB>2</SUB> catalyst.Sociedad Argentina de Informática e Investigación Operativa (SADIO)2014-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf13-24http://sedici.unlp.edu.ar/handle/10915/41696enginfo:eu-repo/semantics/altIdentifier/url/http://43jaiio.sadio.org.ar/proceedings/SIO/9.pdfinfo:eu-repo/semantics/altIdentifier/issn/1850-2865info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/3.0/Creative Commons Attribution 3.0 Unported (CC BY 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:01:08Zoai:sedici.unlp.edu.ar:10915/41696Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:01:08.781SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Parameter estimation of an empirical kinetic model for CO preferential oxidation
title Parameter estimation of an empirical kinetic model for CO preferential oxidation
spellingShingle Parameter estimation of an empirical kinetic model for CO preferential oxidation
Moreno, M. Susana
Ciencias Informáticas
Algorithms
CO-PrOx
parameter estimation
confidence intervals
confidence regions
title_short Parameter estimation of an empirical kinetic model for CO preferential oxidation
title_full Parameter estimation of an empirical kinetic model for CO preferential oxidation
title_fullStr Parameter estimation of an empirical kinetic model for CO preferential oxidation
title_full_unstemmed Parameter estimation of an empirical kinetic model for CO preferential oxidation
title_sort Parameter estimation of an empirical kinetic model for CO preferential oxidation
dc.creator.none.fl_str_mv Moreno, M. Susana
López, Eduardo
Divins, Nuria J.
Llorca, Jordi
author Moreno, M. Susana
author_facet Moreno, M. Susana
López, Eduardo
Divins, Nuria J.
Llorca, Jordi
author_role author
author2 López, Eduardo
Divins, Nuria J.
Llorca, Jordi
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Algorithms
CO-PrOx
parameter estimation
confidence intervals
confidence regions
topic Ciencias Informáticas
Algorithms
CO-PrOx
parameter estimation
confidence intervals
confidence regions
dc.description.none.fl_txt_mv In this work the application of genetic algorithms (GA) for solving the parameter estimation problem in a nonlinear empirical kinetic model for CO preferential oxidation is reported. Kinetic models with nonlinear rate equations often suffer of considerable parameter uncertainty which can lead to inaccurate predictions. Here, after the parameter vector is obtained, a statistical study is performed in order to show how accurate the parameter estimations are determined. The unknown model parameters are obtained by fitting the model predictions against our laboratory observations measured under a range of experimental conditions using a novel Au/TiO<SUB>2</SUB> catalyst.
Sociedad Argentina de Informática e Investigación Operativa (SADIO)
description In this work the application of genetic algorithms (GA) for solving the parameter estimation problem in a nonlinear empirical kinetic model for CO preferential oxidation is reported. Kinetic models with nonlinear rate equations often suffer of considerable parameter uncertainty which can lead to inaccurate predictions. Here, after the parameter vector is obtained, a statistical study is performed in order to show how accurate the parameter estimations are determined. The unknown model parameters are obtained by fitting the model predictions against our laboratory observations measured under a range of experimental conditions using a novel Au/TiO<SUB>2</SUB> catalyst.
publishDate 2014
dc.date.none.fl_str_mv 2014-09
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/41696
url http://sedici.unlp.edu.ar/handle/10915/41696
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://43jaiio.sadio.org.ar/proceedings/SIO/9.pdf
info:eu-repo/semantics/altIdentifier/issn/1850-2865
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/3.0/
Creative Commons Attribution 3.0 Unported (CC BY 3.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/3.0/
Creative Commons Attribution 3.0 Unported (CC BY 3.0)
dc.format.none.fl_str_mv application/pdf
13-24
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615877819891712
score 13.070432