On confidence intervals construction for measurement system capability indicators
- Autores
- Dianda, Daniela Fernanda; Pagura, José Alberto; Ballarini, Nicolás Marcelo
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- There are many criteria that have been proposed to determine the capability of a measurement system, all based on estimates of variance components. Some of them are the Precision to Tolerance Ratio, the Signal to Noise Ratio and the probabilities of misclassification.For most of these indicators, there are no exact confidence intervals, since the exact distributions of the point estimators are not known. In such situations, two approaches are widely used to obtain approximate confidence intervals: the Modified Large Samples (MLS) methods initially proposed by Graybill and Wang, and the construction of Generalized Confidence Intervals (GCI) introduced by Weerahandi.In this work we focus on the construction of the confidence intervals by the generalized approach in the context of Gauge repeatability and reproducibility studies. Since GCI are obtained by simulation procedures, we analyze the effect of the number of simulations on the variability of the confidence limits as well as the effect of the size of the experiment designed to collect data on the precision of the estimates. Both studies allowed deriving some practical implementation guidelines in the use of the GCI approach.We finally present a real case study in which this technique was applied to evaluate the capability of a destructive measurement system.
Fil: Dianda, Daniela Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias económicas y Estadística. Escuela de Estadística. Instituto de Investigaciones Teóricas y Aplicadas; Argentina
Fil: Pagura, José Alberto. Universidad Nacional de Rosario. Facultad de Ciencias económicas y Estadística. Escuela de Estadística. Instituto de Investigaciones Teóricas y Aplicadas; Argentina
Fil: Ballarini, Nicolás Marcelo. Universidad Nacional de Rosario. Facultad de Ciencias económicas y Estadística. Escuela de Estadística. Instituto de Investigaciones Teóricas y Aplicadas; Argentina - Materia
-
GAUGE R&R STUDIES
GENERALIZED CONFIDENCE INTERVALS
DESTRUCTIVE MEASUREMENTS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/178963
Ver los metadatos del registro completo
id |
CONICETDig_bec53a5b76849156888001f0f508fdba |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/178963 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On confidence intervals construction for measurement system capability indicatorsDianda, Daniela FernandaPagura, José AlbertoBallarini, Nicolás MarceloGAUGE R&R STUDIESGENERALIZED CONFIDENCE INTERVALSDESTRUCTIVE MEASUREMENTShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1There are many criteria that have been proposed to determine the capability of a measurement system, all based on estimates of variance components. Some of them are the Precision to Tolerance Ratio, the Signal to Noise Ratio and the probabilities of misclassification.For most of these indicators, there are no exact confidence intervals, since the exact distributions of the point estimators are not known. In such situations, two approaches are widely used to obtain approximate confidence intervals: the Modified Large Samples (MLS) methods initially proposed by Graybill and Wang, and the construction of Generalized Confidence Intervals (GCI) introduced by Weerahandi.In this work we focus on the construction of the confidence intervals by the generalized approach in the context of Gauge repeatability and reproducibility studies. Since GCI are obtained by simulation procedures, we analyze the effect of the number of simulations on the variability of the confidence limits as well as the effect of the size of the experiment designed to collect data on the precision of the estimates. Both studies allowed deriving some practical implementation guidelines in the use of the GCI approach.We finally present a real case study in which this technique was applied to evaluate the capability of a destructive measurement system.Fil: Dianda, Daniela Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias económicas y Estadística. Escuela de Estadística. Instituto de Investigaciones Teóricas y Aplicadas; ArgentinaFil: Pagura, José Alberto. Universidad Nacional de Rosario. Facultad de Ciencias económicas y Estadística. Escuela de Estadística. Instituto de Investigaciones Teóricas y Aplicadas; ArgentinaFil: Ballarini, Nicolás Marcelo. Universidad Nacional de Rosario. Facultad de Ciencias económicas y Estadística. Escuela de Estadística. Instituto de Investigaciones Teóricas y Aplicadas; ArgentinaInternational Refereed Journal of Engineering and Science2017-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/178963Dianda, Daniela Fernanda; Pagura, José Alberto; Ballarini, Nicolás Marcelo; On confidence intervals construction for measurement system capability indicators; International Refereed Journal of Engineering and Science; International Refereed Journal of Engineering and Science; 6; 1; 1-2017; 8-162319-18212319-183XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.irjes.com/Papers/vol6-issue1/B610816.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:08:19Zoai:ri.conicet.gov.ar:11336/178963instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:08:19.323CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On confidence intervals construction for measurement system capability indicators |
title |
On confidence intervals construction for measurement system capability indicators |
spellingShingle |
On confidence intervals construction for measurement system capability indicators Dianda, Daniela Fernanda GAUGE R&R STUDIES GENERALIZED CONFIDENCE INTERVALS DESTRUCTIVE MEASUREMENTS |
title_short |
On confidence intervals construction for measurement system capability indicators |
title_full |
On confidence intervals construction for measurement system capability indicators |
title_fullStr |
On confidence intervals construction for measurement system capability indicators |
title_full_unstemmed |
On confidence intervals construction for measurement system capability indicators |
title_sort |
On confidence intervals construction for measurement system capability indicators |
dc.creator.none.fl_str_mv |
Dianda, Daniela Fernanda Pagura, José Alberto Ballarini, Nicolás Marcelo |
author |
Dianda, Daniela Fernanda |
author_facet |
Dianda, Daniela Fernanda Pagura, José Alberto Ballarini, Nicolás Marcelo |
author_role |
author |
author2 |
Pagura, José Alberto Ballarini, Nicolás Marcelo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
GAUGE R&R STUDIES GENERALIZED CONFIDENCE INTERVALS DESTRUCTIVE MEASUREMENTS |
topic |
GAUGE R&R STUDIES GENERALIZED CONFIDENCE INTERVALS DESTRUCTIVE MEASUREMENTS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
There are many criteria that have been proposed to determine the capability of a measurement system, all based on estimates of variance components. Some of them are the Precision to Tolerance Ratio, the Signal to Noise Ratio and the probabilities of misclassification.For most of these indicators, there are no exact confidence intervals, since the exact distributions of the point estimators are not known. In such situations, two approaches are widely used to obtain approximate confidence intervals: the Modified Large Samples (MLS) methods initially proposed by Graybill and Wang, and the construction of Generalized Confidence Intervals (GCI) introduced by Weerahandi.In this work we focus on the construction of the confidence intervals by the generalized approach in the context of Gauge repeatability and reproducibility studies. Since GCI are obtained by simulation procedures, we analyze the effect of the number of simulations on the variability of the confidence limits as well as the effect of the size of the experiment designed to collect data on the precision of the estimates. Both studies allowed deriving some practical implementation guidelines in the use of the GCI approach.We finally present a real case study in which this technique was applied to evaluate the capability of a destructive measurement system. Fil: Dianda, Daniela Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias económicas y Estadística. Escuela de Estadística. Instituto de Investigaciones Teóricas y Aplicadas; Argentina Fil: Pagura, José Alberto. Universidad Nacional de Rosario. Facultad de Ciencias económicas y Estadística. Escuela de Estadística. Instituto de Investigaciones Teóricas y Aplicadas; Argentina Fil: Ballarini, Nicolás Marcelo. Universidad Nacional de Rosario. Facultad de Ciencias económicas y Estadística. Escuela de Estadística. Instituto de Investigaciones Teóricas y Aplicadas; Argentina |
description |
There are many criteria that have been proposed to determine the capability of a measurement system, all based on estimates of variance components. Some of them are the Precision to Tolerance Ratio, the Signal to Noise Ratio and the probabilities of misclassification.For most of these indicators, there are no exact confidence intervals, since the exact distributions of the point estimators are not known. In such situations, two approaches are widely used to obtain approximate confidence intervals: the Modified Large Samples (MLS) methods initially proposed by Graybill and Wang, and the construction of Generalized Confidence Intervals (GCI) introduced by Weerahandi.In this work we focus on the construction of the confidence intervals by the generalized approach in the context of Gauge repeatability and reproducibility studies. Since GCI are obtained by simulation procedures, we analyze the effect of the number of simulations on the variability of the confidence limits as well as the effect of the size of the experiment designed to collect data on the precision of the estimates. Both studies allowed deriving some practical implementation guidelines in the use of the GCI approach.We finally present a real case study in which this technique was applied to evaluate the capability of a destructive measurement system. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/178963 Dianda, Daniela Fernanda; Pagura, José Alberto; Ballarini, Nicolás Marcelo; On confidence intervals construction for measurement system capability indicators; International Refereed Journal of Engineering and Science; International Refereed Journal of Engineering and Science; 6; 1; 1-2017; 8-16 2319-1821 2319-183X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/178963 |
identifier_str_mv |
Dianda, Daniela Fernanda; Pagura, José Alberto; Ballarini, Nicolás Marcelo; On confidence intervals construction for measurement system capability indicators; International Refereed Journal of Engineering and Science; International Refereed Journal of Engineering and Science; 6; 1; 1-2017; 8-16 2319-1821 2319-183X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.irjes.com/Papers/vol6-issue1/B610816.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
International Refereed Journal of Engineering and Science |
publisher.none.fl_str_mv |
International Refereed Journal of Engineering and Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613950534057984 |
score |
13.070432 |