Wiener Filter for cosmic microwave background maps using neural networks
- Autores
- Costanza, María Belén; Scóccola, Claudia Graciela; Zaldarriaga, Matías
- Año de publicación
- 2023
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Estudiamos una red neuronal convolucional llamada WienerNet la cual aplica el filtro de Wiener a mapas del Fondo Cósmico de Radiación (FCR) con el objetivo de reducir el ruido presente en dichos mapas. Presentamos el funcionamiento de la red neuronal, y comparamos los resultados con los obtenidos al aplicar el filtro de Wiener con el método tradicional, que utiliza el gradiente conjugado. A su vez, mostramos la eficiencia de la aplicación de WienerNet respecto del método tradicional, el cual constituye un cuello de botella en el análisis de datos del FCR. Para este propósito, aplicamos la red neuronal a mapas del FCR con diferentes número de pixeles y diferentes modelos de ruido, y comparamos la eficiencia computacional en cada caso.
We studied a convolutional neural network called WienerNet which applies the Wiener Filter to Cosmic Microwave Background (CMB) maps, whose objective is to reduce the noise present in those maps. We present how the neural network works, and compare its results to those obtained when applying the wiener filter with the traditional method, which uses the conjugate gradient. Also, we show the efficiency of WienerNet with respect to the traditional method which constitutes a bottleneck in the data analysis of the CMB. For these purposes, we applied the neural network to CMB maps with different numbers of pixels and different noise models, and we compared the computational efficiency in each case.
Asociación Argentina de Astronomía
Facultad de Ciencias Astronómicas y Geofísicas - Materia
-
Ciencias Astronómicas
cosmic background radiation
cosmological parameters
early universe
methods: numerical
methods: statistical - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/164501
Ver los metadatos del registro completo
id |
SEDICI_96d6bc7a6e90276f1aeac9384dcc2724 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/164501 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Wiener Filter for cosmic microwave background maps using neural networksCostanza, María BelénScóccola, Claudia GracielaZaldarriaga, MatíasCiencias Astronómicascosmic background radiationcosmological parametersearly universemethods: numericalmethods: statisticalEstudiamos una red neuronal convolucional llamada WienerNet la cual aplica el filtro de Wiener a mapas del Fondo Cósmico de Radiación (FCR) con el objetivo de reducir el ruido presente en dichos mapas. Presentamos el funcionamiento de la red neuronal, y comparamos los resultados con los obtenidos al aplicar el filtro de Wiener con el método tradicional, que utiliza el gradiente conjugado. A su vez, mostramos la eficiencia de la aplicación de WienerNet respecto del método tradicional, el cual constituye un cuello de botella en el análisis de datos del FCR. Para este propósito, aplicamos la red neuronal a mapas del FCR con diferentes número de pixeles y diferentes modelos de ruido, y comparamos la eficiencia computacional en cada caso.We studied a convolutional neural network called WienerNet which applies the Wiener Filter to Cosmic Microwave Background (CMB) maps, whose objective is to reduce the noise present in those maps. We present how the neural network works, and compare its results to those obtained when applying the wiener filter with the traditional method, which uses the conjugate gradient. Also, we show the efficiency of WienerNet with respect to the traditional method which constitutes a bottleneck in the data analysis of the CMB. For these purposes, we applied the neural network to CMB maps with different numbers of pixels and different noise models, and we compared the computational efficiency in each case.Asociación Argentina de AstronomíaFacultad de Ciencias Astronómicas y Geofísicas2023-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/164501spainfo:eu-repo/semantics/altIdentifier/issn/1669-9521info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:24:31Zoai:sedici.unlp.edu.ar:10915/164501Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:24:31.866SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Wiener Filter for cosmic microwave background maps using neural networks |
title |
Wiener Filter for cosmic microwave background maps using neural networks |
spellingShingle |
Wiener Filter for cosmic microwave background maps using neural networks Costanza, María Belén Ciencias Astronómicas cosmic background radiation cosmological parameters early universe methods: numerical methods: statistical |
title_short |
Wiener Filter for cosmic microwave background maps using neural networks |
title_full |
Wiener Filter for cosmic microwave background maps using neural networks |
title_fullStr |
Wiener Filter for cosmic microwave background maps using neural networks |
title_full_unstemmed |
Wiener Filter for cosmic microwave background maps using neural networks |
title_sort |
Wiener Filter for cosmic microwave background maps using neural networks |
dc.creator.none.fl_str_mv |
Costanza, María Belén Scóccola, Claudia Graciela Zaldarriaga, Matías |
author |
Costanza, María Belén |
author_facet |
Costanza, María Belén Scóccola, Claudia Graciela Zaldarriaga, Matías |
author_role |
author |
author2 |
Scóccola, Claudia Graciela Zaldarriaga, Matías |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Astronómicas cosmic background radiation cosmological parameters early universe methods: numerical methods: statistical |
topic |
Ciencias Astronómicas cosmic background radiation cosmological parameters early universe methods: numerical methods: statistical |
dc.description.none.fl_txt_mv |
Estudiamos una red neuronal convolucional llamada WienerNet la cual aplica el filtro de Wiener a mapas del Fondo Cósmico de Radiación (FCR) con el objetivo de reducir el ruido presente en dichos mapas. Presentamos el funcionamiento de la red neuronal, y comparamos los resultados con los obtenidos al aplicar el filtro de Wiener con el método tradicional, que utiliza el gradiente conjugado. A su vez, mostramos la eficiencia de la aplicación de WienerNet respecto del método tradicional, el cual constituye un cuello de botella en el análisis de datos del FCR. Para este propósito, aplicamos la red neuronal a mapas del FCR con diferentes número de pixeles y diferentes modelos de ruido, y comparamos la eficiencia computacional en cada caso. We studied a convolutional neural network called WienerNet which applies the Wiener Filter to Cosmic Microwave Background (CMB) maps, whose objective is to reduce the noise present in those maps. We present how the neural network works, and compare its results to those obtained when applying the wiener filter with the traditional method, which uses the conjugate gradient. Also, we show the efficiency of WienerNet with respect to the traditional method which constitutes a bottleneck in the data analysis of the CMB. For these purposes, we applied the neural network to CMB maps with different numbers of pixels and different noise models, and we compared the computational efficiency in each case. Asociación Argentina de Astronomía Facultad de Ciencias Astronómicas y Geofísicas |
description |
Estudiamos una red neuronal convolucional llamada WienerNet la cual aplica el filtro de Wiener a mapas del Fondo Cósmico de Radiación (FCR) con el objetivo de reducir el ruido presente en dichos mapas. Presentamos el funcionamiento de la red neuronal, y comparamos los resultados con los obtenidos al aplicar el filtro de Wiener con el método tradicional, que utiliza el gradiente conjugado. A su vez, mostramos la eficiencia de la aplicación de WienerNet respecto del método tradicional, el cual constituye un cuello de botella en el análisis de datos del FCR. Para este propósito, aplicamos la red neuronal a mapas del FCR con diferentes número de pixeles y diferentes modelos de ruido, y comparamos la eficiencia computacional en cada caso. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/164501 |
url |
http://sedici.unlp.edu.ar/handle/10915/164501 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1669-9521 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846783700263501824 |
score |
12.982451 |