Improving the O-GEHL branch prediction accuracy using analytical results
- Autores
- Tiamkaew, Ekkasit; Kongmunvattana, Angkul
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The O-GEHL branch predictor has outperformed other prediction schemes using the same set of benchmarks in an international branch prediction contest, CBP-1. In this paper, we present the analysis results on each of the OGEHL branch predictor tables and also on the optimal number of predictor tables. Two methods are subsequently proposed to help increase the O-GEHL prediction accuracy. The first one aims to increase the space utilization of the first predictor table by dynamically adjusting the lengths of branch history regarding to the type of a benchmark currently in execution. The second one adds an extra table into the O-GEHL predictor using the space saved from the sharing of hysteresis bits. Experimental results have confirmed that both schemes improve the accuracy of two different predictor configurations, leading to two promising research directions for future explorations.
Facultad de Informática - Materia
-
Ciencias Informáticas
Neural nets
branch predictor
perceptron
predictor analysis - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/9550
Ver los metadatos del registro completo
id |
SEDICI_9045099bcb16ba7eedc7541219534d4b |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/9550 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Improving the O-GEHL branch prediction accuracy using analytical resultsTiamkaew, EkkasitKongmunvattana, AngkulCiencias InformáticasNeural netsbranch predictorperceptronpredictor analysisThe O-GEHL branch predictor has outperformed other prediction schemes using the same set of benchmarks in an international branch prediction contest, CBP-1. In this paper, we present the analysis results on each of the OGEHL branch predictor tables and also on the optimal number of predictor tables. Two methods are subsequently proposed to help increase the O-GEHL prediction accuracy. The first one aims to increase the space utilization of the first predictor table by dynamically adjusting the lengths of branch history regarding to the type of a benchmark currently in execution. The second one adds an extra table into the O-GEHL predictor using the space saved from the sharing of hysteresis bits. Experimental results have confirmed that both schemes improve the accuracy of two different predictor configurations, leading to two promising research directions for future explorations.Facultad de Informática2007-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf171-176http://sedici.unlp.edu.ar/handle/10915/9550enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Apr07-7.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/3.0/Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:50:44Zoai:sedici.unlp.edu.ar:10915/9550Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:50:44.359SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Improving the O-GEHL branch prediction accuracy using analytical results |
title |
Improving the O-GEHL branch prediction accuracy using analytical results |
spellingShingle |
Improving the O-GEHL branch prediction accuracy using analytical results Tiamkaew, Ekkasit Ciencias Informáticas Neural nets branch predictor perceptron predictor analysis |
title_short |
Improving the O-GEHL branch prediction accuracy using analytical results |
title_full |
Improving the O-GEHL branch prediction accuracy using analytical results |
title_fullStr |
Improving the O-GEHL branch prediction accuracy using analytical results |
title_full_unstemmed |
Improving the O-GEHL branch prediction accuracy using analytical results |
title_sort |
Improving the O-GEHL branch prediction accuracy using analytical results |
dc.creator.none.fl_str_mv |
Tiamkaew, Ekkasit Kongmunvattana, Angkul |
author |
Tiamkaew, Ekkasit |
author_facet |
Tiamkaew, Ekkasit Kongmunvattana, Angkul |
author_role |
author |
author2 |
Kongmunvattana, Angkul |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Neural nets branch predictor perceptron predictor analysis |
topic |
Ciencias Informáticas Neural nets branch predictor perceptron predictor analysis |
dc.description.none.fl_txt_mv |
The O-GEHL branch predictor has outperformed other prediction schemes using the same set of benchmarks in an international branch prediction contest, CBP-1. In this paper, we present the analysis results on each of the OGEHL branch predictor tables and also on the optimal number of predictor tables. Two methods are subsequently proposed to help increase the O-GEHL prediction accuracy. The first one aims to increase the space utilization of the first predictor table by dynamically adjusting the lengths of branch history regarding to the type of a benchmark currently in execution. The second one adds an extra table into the O-GEHL predictor using the space saved from the sharing of hysteresis bits. Experimental results have confirmed that both schemes improve the accuracy of two different predictor configurations, leading to two promising research directions for future explorations. Facultad de Informática |
description |
The O-GEHL branch predictor has outperformed other prediction schemes using the same set of benchmarks in an international branch prediction contest, CBP-1. In this paper, we present the analysis results on each of the OGEHL branch predictor tables and also on the optimal number of predictor tables. Two methods are subsequently proposed to help increase the O-GEHL prediction accuracy. The first one aims to increase the space utilization of the first predictor table by dynamically adjusting the lengths of branch history regarding to the type of a benchmark currently in execution. The second one adds an extra table into the O-GEHL predictor using the space saved from the sharing of hysteresis bits. Experimental results have confirmed that both schemes improve the accuracy of two different predictor configurations, leading to two promising research directions for future explorations. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/9550 |
url |
http://sedici.unlp.edu.ar/handle/10915/9550 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Apr07-7.pdf info:eu-repo/semantics/altIdentifier/issn/1666-6038 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
dc.format.none.fl_str_mv |
application/pdf 171-176 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615758309490688 |
score |
13.070432 |