Acoustic impedance estimation using a gradient-based algorithm with total variation semi-norm regularization

Autores
Pérez, Daniel Omar; Velis, Danilo Rubén
Año de publicación
2017
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
We present an algorithm to estimate blocky images of the subsurface acoustic impedance (AI) from seismic reflection data. We use the total variation semi-norm (TV) to regularize the inversion and promote blocky solutions which are, by virtue of the capability of TV to handle edges properly, adequate to model layered earth models with sharp contrasts. In addition, the use of the TV leads to a convex objective function that can be minimized using a gradientbased algorithm that only requires matrix-vector multiplications and no direct matrix inversion. The latter makes the algorithm numerically stable, easy to apply, and economic in terms of computational cost. Besides, given appropriate a priori information, the algorithm allows to easily incorporate into the inversion scheme the low frequency trend that is missing from the data. Numerical tests on noisy 2D synthetic and field data show that the proposed method is capable of providing consistent and blocky AI images that preserve edges and the subsurface layered structure.
Facultad de Ciencias Astronómicas y Geofísicas
Materia
Ciencias Astronómicas
impedancia acústica
algoritmos
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/72813

id SEDICI_8f63ddef3ef0719bdd5a322a71ba2879
oai_identifier_str oai:sedici.unlp.edu.ar:10915/72813
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Acoustic impedance estimation using a gradient-based algorithm with total variation semi-norm regularizationPérez, Daniel OmarVelis, Danilo RubénCiencias Astronómicasimpedancia acústicaalgoritmosWe present an algorithm to estimate blocky images of the subsurface acoustic impedance (AI) from seismic reflection data. We use the total variation semi-norm (TV) to regularize the inversion and promote blocky solutions which are, by virtue of the capability of TV to handle edges properly, adequate to model layered earth models with sharp contrasts. In addition, the use of the TV leads to a convex objective function that can be minimized using a gradientbased algorithm that only requires matrix-vector multiplications and no direct matrix inversion. The latter makes the algorithm numerically stable, easy to apply, and economic in terms of computational cost. Besides, given appropriate a priori information, the algorithm allows to easily incorporate into the inversion scheme the low frequency trend that is missing from the data. Numerical tests on noisy 2D synthetic and field data show that the proposed method is capable of providing consistent and blocky AI images that preserve edges and the subsurface layered structure.Facultad de Ciencias Astronómicas y Geofísicas2017info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/72813enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:04:05Zoai:sedici.unlp.edu.ar:10915/72813Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:04:05.397SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Acoustic impedance estimation using a gradient-based algorithm with total variation semi-norm regularization
title Acoustic impedance estimation using a gradient-based algorithm with total variation semi-norm regularization
spellingShingle Acoustic impedance estimation using a gradient-based algorithm with total variation semi-norm regularization
Pérez, Daniel Omar
Ciencias Astronómicas
impedancia acústica
algoritmos
title_short Acoustic impedance estimation using a gradient-based algorithm with total variation semi-norm regularization
title_full Acoustic impedance estimation using a gradient-based algorithm with total variation semi-norm regularization
title_fullStr Acoustic impedance estimation using a gradient-based algorithm with total variation semi-norm regularization
title_full_unstemmed Acoustic impedance estimation using a gradient-based algorithm with total variation semi-norm regularization
title_sort Acoustic impedance estimation using a gradient-based algorithm with total variation semi-norm regularization
dc.creator.none.fl_str_mv Pérez, Daniel Omar
Velis, Danilo Rubén
author Pérez, Daniel Omar
author_facet Pérez, Daniel Omar
Velis, Danilo Rubén
author_role author
author2 Velis, Danilo Rubén
author2_role author
dc.subject.none.fl_str_mv Ciencias Astronómicas
impedancia acústica
algoritmos
topic Ciencias Astronómicas
impedancia acústica
algoritmos
dc.description.none.fl_txt_mv We present an algorithm to estimate blocky images of the subsurface acoustic impedance (AI) from seismic reflection data. We use the total variation semi-norm (TV) to regularize the inversion and promote blocky solutions which are, by virtue of the capability of TV to handle edges properly, adequate to model layered earth models with sharp contrasts. In addition, the use of the TV leads to a convex objective function that can be minimized using a gradientbased algorithm that only requires matrix-vector multiplications and no direct matrix inversion. The latter makes the algorithm numerically stable, easy to apply, and economic in terms of computational cost. Besides, given appropriate a priori information, the algorithm allows to easily incorporate into the inversion scheme the low frequency trend that is missing from the data. Numerical tests on noisy 2D synthetic and field data show that the proposed method is capable of providing consistent and blocky AI images that preserve edges and the subsurface layered structure.
Facultad de Ciencias Astronómicas y Geofísicas
description We present an algorithm to estimate blocky images of the subsurface acoustic impedance (AI) from seismic reflection data. We use the total variation semi-norm (TV) to regularize the inversion and promote blocky solutions which are, by virtue of the capability of TV to handle edges properly, adequate to model layered earth models with sharp contrasts. In addition, the use of the TV leads to a convex objective function that can be minimized using a gradientbased algorithm that only requires matrix-vector multiplications and no direct matrix inversion. The latter makes the algorithm numerically stable, easy to apply, and economic in terms of computational cost. Besides, given appropriate a priori information, the algorithm allows to easily incorporate into the inversion scheme the low frequency trend that is missing from the data. Numerical tests on noisy 2D synthetic and field data show that the proposed method is capable of providing consistent and blocky AI images that preserve edges and the subsurface layered structure.
publishDate 2017
dc.date.none.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/72813
url http://sedici.unlp.edu.ar/handle/10915/72813
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064094702993408
score 13.22299