Acoustic impedance estimation using a gradient-based algorithm with total variation semi-norm regularization
- Autores
- Pérez, Daniel Omar; Velis, Danilo Rubén
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- We present an algorithm to estimate blocky images of the subsurface acoustic impedance (AI) from seismic reflection data. We use the total variation semi-norm (TV) to regularize the inversion and promote blocky solutions which are, by virtue of the capability of TV to handle edges properly, adequate to model layered earth models with sharp contrasts. In addition, the use of the TV leads to a convex objective function that can be minimized using a gradientbased algorithm that only requires matrix-vector multiplications and no direct matrix inversion. The latter makes the algorithm numerically stable, easy to apply, and economic in terms of computational cost. Besides, given appropriate a priori information, the algorithm allows to easily incorporate into the inversion scheme the low frequency trend that is missing from the data. Numerical tests on noisy 2D synthetic and field data show that the proposed method is capable of providing consistent and blocky AI images that preserve edges and the subsurface layered structure.
Facultad de Ciencias Astronómicas y Geofísicas - Materia
-
Ciencias Astronómicas
impedancia acústica
algoritmos - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/72813
Ver los metadatos del registro completo
id |
SEDICI_8f63ddef3ef0719bdd5a322a71ba2879 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/72813 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Acoustic impedance estimation using a gradient-based algorithm with total variation semi-norm regularizationPérez, Daniel OmarVelis, Danilo RubénCiencias Astronómicasimpedancia acústicaalgoritmosWe present an algorithm to estimate blocky images of the subsurface acoustic impedance (AI) from seismic reflection data. We use the total variation semi-norm (TV) to regularize the inversion and promote blocky solutions which are, by virtue of the capability of TV to handle edges properly, adequate to model layered earth models with sharp contrasts. In addition, the use of the TV leads to a convex objective function that can be minimized using a gradientbased algorithm that only requires matrix-vector multiplications and no direct matrix inversion. The latter makes the algorithm numerically stable, easy to apply, and economic in terms of computational cost. Besides, given appropriate a priori information, the algorithm allows to easily incorporate into the inversion scheme the low frequency trend that is missing from the data. Numerical tests on noisy 2D synthetic and field data show that the proposed method is capable of providing consistent and blocky AI images that preserve edges and the subsurface layered structure.Facultad de Ciencias Astronómicas y Geofísicas2017info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/72813enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:04:05Zoai:sedici.unlp.edu.ar:10915/72813Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:04:05.397SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Acoustic impedance estimation using a gradient-based algorithm with total variation semi-norm regularization |
title |
Acoustic impedance estimation using a gradient-based algorithm with total variation semi-norm regularization |
spellingShingle |
Acoustic impedance estimation using a gradient-based algorithm with total variation semi-norm regularization Pérez, Daniel Omar Ciencias Astronómicas impedancia acústica algoritmos |
title_short |
Acoustic impedance estimation using a gradient-based algorithm with total variation semi-norm regularization |
title_full |
Acoustic impedance estimation using a gradient-based algorithm with total variation semi-norm regularization |
title_fullStr |
Acoustic impedance estimation using a gradient-based algorithm with total variation semi-norm regularization |
title_full_unstemmed |
Acoustic impedance estimation using a gradient-based algorithm with total variation semi-norm regularization |
title_sort |
Acoustic impedance estimation using a gradient-based algorithm with total variation semi-norm regularization |
dc.creator.none.fl_str_mv |
Pérez, Daniel Omar Velis, Danilo Rubén |
author |
Pérez, Daniel Omar |
author_facet |
Pérez, Daniel Omar Velis, Danilo Rubén |
author_role |
author |
author2 |
Velis, Danilo Rubén |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Astronómicas impedancia acústica algoritmos |
topic |
Ciencias Astronómicas impedancia acústica algoritmos |
dc.description.none.fl_txt_mv |
We present an algorithm to estimate blocky images of the subsurface acoustic impedance (AI) from seismic reflection data. We use the total variation semi-norm (TV) to regularize the inversion and promote blocky solutions which are, by virtue of the capability of TV to handle edges properly, adequate to model layered earth models with sharp contrasts. In addition, the use of the TV leads to a convex objective function that can be minimized using a gradientbased algorithm that only requires matrix-vector multiplications and no direct matrix inversion. The latter makes the algorithm numerically stable, easy to apply, and economic in terms of computational cost. Besides, given appropriate a priori information, the algorithm allows to easily incorporate into the inversion scheme the low frequency trend that is missing from the data. Numerical tests on noisy 2D synthetic and field data show that the proposed method is capable of providing consistent and blocky AI images that preserve edges and the subsurface layered structure. Facultad de Ciencias Astronómicas y Geofísicas |
description |
We present an algorithm to estimate blocky images of the subsurface acoustic impedance (AI) from seismic reflection data. We use the total variation semi-norm (TV) to regularize the inversion and promote blocky solutions which are, by virtue of the capability of TV to handle edges properly, adequate to model layered earth models with sharp contrasts. In addition, the use of the TV leads to a convex objective function that can be minimized using a gradientbased algorithm that only requires matrix-vector multiplications and no direct matrix inversion. The latter makes the algorithm numerically stable, easy to apply, and economic in terms of computational cost. Besides, given appropriate a priori information, the algorithm allows to easily incorporate into the inversion scheme the low frequency trend that is missing from the data. Numerical tests on noisy 2D synthetic and field data show that the proposed method is capable of providing consistent and blocky AI images that preserve edges and the subsurface layered structure. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/72813 |
url |
http://sedici.unlp.edu.ar/handle/10915/72813 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846064094702993408 |
score |
13.22299 |