Álgebras de Heyting con sucesor
- Autores
- San Martín, Hernán Javier
- Año de publicación
- 2011
- Idioma
- español castellano
- Tipo de recurso
- tesis doctoral
- Estado
- versión aceptada
- Colaborador/a o director/a de tesis
- Sagastume, Marta Susana
Castiglioni, José Luis - Descripción
- En el cálculo proposicional intuicionista podemos considerar los símbolos de conectivos asociados a la implicación, conjunción, disyunción y negación respectivamente. Kuznetsov introdujo un símbolo de conectivo unario nuevo (al que denominamos sucesor), agregando este símbolo en las reglas de formación de fórmulas del intuicionismo y considerando un esquema particular de axiomas. El sucesor constituye un caso particular de conectivo implícito nuevo del cálculo proposicional intuicionista (esta es una diferencia con respecto al cálculo proposicional clásico, en donde no existen conectivos implícitos nuevos). La contraparte algebraica del cálculo introducido por Kuznetsov son las álgebras de Heyting que admiten una función unaria S a la que llamamos sucesor (siendo S parte del lenguaje del álgebra). Esta función forma parte de una familia de operadores compatibles e implícitamente definidos en álgebras de Heyting. Esta tesis se divide en las siguientes tres partes: primero se desarrolla una dualidad de Priestley para álgebras de Heyting con ciertos operadores unarios adicionales y en particular para álgebras de Heyting con sucesor; segundo, se utiliza como herramienta la última dualidad mencionada para obtener propiedades de ciertas subvariedades de la variedad de álgebras de Heyting con sucesor; por último se extienden algunos resultados para el caso de retículos residuados.
Doctor en Ciencias Exactas, área Matemática
Universidad Nacional de La Plata
Facultad de Ciencias Exactas - Materia
-
Ciencias Exactas
Matemática
Mathematical Logic
álgebra
cálculo proposicional intuicionista
lógica - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/2707
Ver los metadatos del registro completo
id |
SEDICI_8d85a44fcf3866f462e5a06bcd51d0c7 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/2707 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Álgebras de Heyting con sucesorSan Martín, Hernán JavierCiencias ExactasMatemáticaMathematical Logicálgebracálculo proposicional intuicionistalógicaEn el cálculo proposicional intuicionista podemos considerar los símbolos de conectivos asociados a la implicación, conjunción, disyunción y negación respectivamente. Kuznetsov introdujo un símbolo de conectivo unario nuevo (al que denominamos sucesor), agregando este símbolo en las reglas de formación de fórmulas del intuicionismo y considerando un esquema particular de axiomas. El sucesor constituye un caso particular de conectivo implícito nuevo del cálculo proposicional intuicionista (esta es una diferencia con respecto al cálculo proposicional clásico, en donde no existen conectivos implícitos nuevos). La contraparte algebraica del cálculo introducido por Kuznetsov son las álgebras de Heyting que admiten una función unaria S a la que llamamos sucesor (siendo S parte del lenguaje del álgebra). Esta función forma parte de una familia de operadores compatibles e implícitamente definidos en álgebras de Heyting. Esta tesis se divide en las siguientes tres partes: primero se desarrolla una dualidad de Priestley para álgebras de Heyting con ciertos operadores unarios adicionales y en particular para álgebras de Heyting con sucesor; segundo, se utiliza como herramienta la última dualidad mencionada para obtener propiedades de ciertas subvariedades de la variedad de álgebras de Heyting con sucesor; por último se extienden algunos resultados para el caso de retículos residuados.Doctor en Ciencias Exactas, área MatemáticaUniversidad Nacional de La PlataFacultad de Ciencias ExactasSagastume, Marta SusanaCastiglioni, José Luis2011info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionTesis de doctoradohttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/2707https://doi.org/10.35537/10915/2707spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:21:50Zoai:sedici.unlp.edu.ar:10915/2707Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:21:51.24SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Álgebras de Heyting con sucesor |
title |
Álgebras de Heyting con sucesor |
spellingShingle |
Álgebras de Heyting con sucesor San Martín, Hernán Javier Ciencias Exactas Matemática Mathematical Logic álgebra cálculo proposicional intuicionista lógica |
title_short |
Álgebras de Heyting con sucesor |
title_full |
Álgebras de Heyting con sucesor |
title_fullStr |
Álgebras de Heyting con sucesor |
title_full_unstemmed |
Álgebras de Heyting con sucesor |
title_sort |
Álgebras de Heyting con sucesor |
dc.creator.none.fl_str_mv |
San Martín, Hernán Javier |
author |
San Martín, Hernán Javier |
author_facet |
San Martín, Hernán Javier |
author_role |
author |
dc.contributor.none.fl_str_mv |
Sagastume, Marta Susana Castiglioni, José Luis |
dc.subject.none.fl_str_mv |
Ciencias Exactas Matemática Mathematical Logic álgebra cálculo proposicional intuicionista lógica |
topic |
Ciencias Exactas Matemática Mathematical Logic álgebra cálculo proposicional intuicionista lógica |
dc.description.none.fl_txt_mv |
En el cálculo proposicional intuicionista podemos considerar los símbolos de conectivos asociados a la implicación, conjunción, disyunción y negación respectivamente. Kuznetsov introdujo un símbolo de conectivo unario nuevo (al que denominamos sucesor), agregando este símbolo en las reglas de formación de fórmulas del intuicionismo y considerando un esquema particular de axiomas. El sucesor constituye un caso particular de conectivo implícito nuevo del cálculo proposicional intuicionista (esta es una diferencia con respecto al cálculo proposicional clásico, en donde no existen conectivos implícitos nuevos). La contraparte algebraica del cálculo introducido por Kuznetsov son las álgebras de Heyting que admiten una función unaria S a la que llamamos sucesor (siendo S parte del lenguaje del álgebra). Esta función forma parte de una familia de operadores compatibles e implícitamente definidos en álgebras de Heyting. Esta tesis se divide en las siguientes tres partes: primero se desarrolla una dualidad de Priestley para álgebras de Heyting con ciertos operadores unarios adicionales y en particular para álgebras de Heyting con sucesor; segundo, se utiliza como herramienta la última dualidad mencionada para obtener propiedades de ciertas subvariedades de la variedad de álgebras de Heyting con sucesor; por último se extienden algunos resultados para el caso de retículos residuados. Doctor en Ciencias Exactas, área Matemática Universidad Nacional de La Plata Facultad de Ciencias Exactas |
description |
En el cálculo proposicional intuicionista podemos considerar los símbolos de conectivos asociados a la implicación, conjunción, disyunción y negación respectivamente. Kuznetsov introdujo un símbolo de conectivo unario nuevo (al que denominamos sucesor), agregando este símbolo en las reglas de formación de fórmulas del intuicionismo y considerando un esquema particular de axiomas. El sucesor constituye un caso particular de conectivo implícito nuevo del cálculo proposicional intuicionista (esta es una diferencia con respecto al cálculo proposicional clásico, en donde no existen conectivos implícitos nuevos). La contraparte algebraica del cálculo introducido por Kuznetsov son las álgebras de Heyting que admiten una función unaria S a la que llamamos sucesor (siendo S parte del lenguaje del álgebra). Esta función forma parte de una familia de operadores compatibles e implícitamente definidos en álgebras de Heyting. Esta tesis se divide en las siguientes tres partes: primero se desarrolla una dualidad de Priestley para álgebras de Heyting con ciertos operadores unarios adicionales y en particular para álgebras de Heyting con sucesor; segundo, se utiliza como herramienta la última dualidad mencionada para obtener propiedades de ciertas subvariedades de la variedad de álgebras de Heyting con sucesor; por último se extienden algunos resultados para el caso de retículos residuados. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/acceptedVersion Tesis de doctorado http://purl.org/coar/resource_type/c_db06 info:ar-repo/semantics/tesisDoctoral |
format |
doctoralThesis |
status_str |
acceptedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/2707 https://doi.org/10.35537/10915/2707 |
url |
http://sedici.unlp.edu.ar/handle/10915/2707 https://doi.org/10.35537/10915/2707 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260044436996096 |
score |
13.13397 |