Machine Learning for Site Adaptation of Satellite-Derived Solar Irradiance in Northwestern Argentina

Autores
Ledesma, Rubén; Salazar, Germán Ariel
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Accurate estimation of global horizontal irradiance (GHI) is essential for solar energy resource assessment, particularly in regions with limited ground-based measurements. This study evaluates the performance of three machine learning models—Simple Linear Regression (SLR), Extreme Gradient Boosting (XGB), and Multilayer Perceptron (MLP)—for the site adaptation of satellite-derived GHI data in five locations in Northwestern Argentina. Two satellite products, CAMS and LSA-SAF, were used as input data. The models were assessed using standard error metrics (MBE, MAE, RMSE), and their residual patterns were analyzed. Results show that LSA-SAF data led to lower errors compared to CAMS, especially in highaltitude sites. While complex models like MLP and XGB marginally improved accuracy in some cases, SLR offered comparable results with higher robustness. The analysis also identified systematic biases and discretization effects in tree-based models. These findings suggest that, under current data conditions, simpler models may offer reliable performance. Enhancing input data quality and incorporating additional meteorological features may yield greater improvements than increasing model complexity.
La estimación precisa de la irradiancia global horizontal (GHI) es fundamental para evaluar el recurso solar, especialmente en regiones con escasas mediciones terrestres. Este estudio evalúa el desempeño de tres modelos de aprendizaje automático—Regresión Lineal Simple (SLR), Extreme Gradient Boosting (XGB) y Perceptrón Multicapa (MLP)—para la adaptación al sitio de datos de GHI obtenidos por satélite en cinco ubicaciones del noroeste argentino. Se utilizaron dos productos satelitales, CAMS y LSA-SAF, como datos de entrada. Los modelos se evaluaron mediante métricas estándar (MBE, MAE, RMSE) y análisis de residuos. Los resultados indican que los datos de LSA-SAF generaron errores menores, especialmente en sitios de gran altitud. Aunque modelos complejos como MLP y XGB mejoraron levemente la precisión en algunos casos, SLR logró resultados comparables con mayor robustez. El análisis también evidenció sesgos sistemáticos y efectos de discretización en modelos basados enárboles. Estos hallazgos sugieren que, dadas las condiciones actuales de los datos, modelos simples pueden ofrecer un desempeño confiable. Mejoras significativas podrían lograrse mediante la incorporación de variables meteorológicas adicionales y datos de mayor calidad.
Facultad de Informática
Materia
Ciencias Informáticas
Solar irradiance
Site adaptation
Machine learning
Irradiancia solar
Adaptación al Sitio
Aprendizaje automático
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/186891

id SEDICI_8c642836204ed1fd7cfa850eaf832318
oai_identifier_str oai:sedici.unlp.edu.ar:10915/186891
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Machine Learning for Site Adaptation of Satellite-Derived Solar Irradiance in Northwestern ArgentinaAprendizaje automático para la adaptación al sitio de irradiancia solar derivada de salites en el Noroeste ArgentinoLedesma, RubénSalazar, Germán ArielCiencias InformáticasSolar irradianceSite adaptationMachine learningIrradiancia solarAdaptación al SitioAprendizaje automáticoAccurate estimation of global horizontal irradiance (GHI) is essential for solar energy resource assessment, particularly in regions with limited ground-based measurements. This study evaluates the performance of three machine learning models—Simple Linear Regression (SLR), Extreme Gradient Boosting (XGB), and Multilayer Perceptron (MLP)—for the site adaptation of satellite-derived GHI data in five locations in Northwestern Argentina. Two satellite products, CAMS and LSA-SAF, were used as input data. The models were assessed using standard error metrics (MBE, MAE, RMSE), and their residual patterns were analyzed. Results show that LSA-SAF data led to lower errors compared to CAMS, especially in highaltitude sites. While complex models like MLP and XGB marginally improved accuracy in some cases, SLR offered comparable results with higher robustness. The analysis also identified systematic biases and discretization effects in tree-based models. These findings suggest that, under current data conditions, simpler models may offer reliable performance. Enhancing input data quality and incorporating additional meteorological features may yield greater improvements than increasing model complexity.La estimación precisa de la irradiancia global horizontal (GHI) es fundamental para evaluar el recurso solar, especialmente en regiones con escasas mediciones terrestres. Este estudio evalúa el desempeño de tres modelos de aprendizaje automático—Regresión Lineal Simple (SLR), Extreme Gradient Boosting (XGB) y Perceptrón Multicapa (MLP)—para la adaptación al sitio de datos de GHI obtenidos por satélite en cinco ubicaciones del noroeste argentino. Se utilizaron dos productos satelitales, CAMS y LSA-SAF, como datos de entrada. Los modelos se evaluaron mediante métricas estándar (MBE, MAE, RMSE) y análisis de residuos. Los resultados indican que los datos de LSA-SAF generaron errores menores, especialmente en sitios de gran altitud. Aunque modelos complejos como MLP y XGB mejoraron levemente la precisión en algunos casos, SLR logró resultados comparables con mayor robustez. El análisis también evidenció sesgos sistemáticos y efectos de discretización en modelos basados enárboles. Estos hallazgos sugieren que, dadas las condiciones actuales de los datos, modelos simples pueden ofrecer un desempeño confiable. Mejoras significativas podrían lograrse mediante la incorporación de variables meteorológicas adicionales y datos de mayor calidad.Facultad de Informática2025-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/186891enginfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/altIdentifier/doi/10.24215/16666038.25.e10.info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-11-12T11:15:38Zoai:sedici.unlp.edu.ar:10915/186891Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-11-12 11:15:39.142SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Machine Learning for Site Adaptation of Satellite-Derived Solar Irradiance in Northwestern Argentina
Aprendizaje automático para la adaptación al sitio de irradiancia solar derivada de salites en el Noroeste Argentino
title Machine Learning for Site Adaptation of Satellite-Derived Solar Irradiance in Northwestern Argentina
spellingShingle Machine Learning for Site Adaptation of Satellite-Derived Solar Irradiance in Northwestern Argentina
Ledesma, Rubén
Ciencias Informáticas
Solar irradiance
Site adaptation
Machine learning
Irradiancia solar
Adaptación al Sitio
Aprendizaje automático
title_short Machine Learning for Site Adaptation of Satellite-Derived Solar Irradiance in Northwestern Argentina
title_full Machine Learning for Site Adaptation of Satellite-Derived Solar Irradiance in Northwestern Argentina
title_fullStr Machine Learning for Site Adaptation of Satellite-Derived Solar Irradiance in Northwestern Argentina
title_full_unstemmed Machine Learning for Site Adaptation of Satellite-Derived Solar Irradiance in Northwestern Argentina
title_sort Machine Learning for Site Adaptation of Satellite-Derived Solar Irradiance in Northwestern Argentina
dc.creator.none.fl_str_mv Ledesma, Rubén
Salazar, Germán Ariel
author Ledesma, Rubén
author_facet Ledesma, Rubén
Salazar, Germán Ariel
author_role author
author2 Salazar, Germán Ariel
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
Solar irradiance
Site adaptation
Machine learning
Irradiancia solar
Adaptación al Sitio
Aprendizaje automático
topic Ciencias Informáticas
Solar irradiance
Site adaptation
Machine learning
Irradiancia solar
Adaptación al Sitio
Aprendizaje automático
dc.description.none.fl_txt_mv Accurate estimation of global horizontal irradiance (GHI) is essential for solar energy resource assessment, particularly in regions with limited ground-based measurements. This study evaluates the performance of three machine learning models—Simple Linear Regression (SLR), Extreme Gradient Boosting (XGB), and Multilayer Perceptron (MLP)—for the site adaptation of satellite-derived GHI data in five locations in Northwestern Argentina. Two satellite products, CAMS and LSA-SAF, were used as input data. The models were assessed using standard error metrics (MBE, MAE, RMSE), and their residual patterns were analyzed. Results show that LSA-SAF data led to lower errors compared to CAMS, especially in highaltitude sites. While complex models like MLP and XGB marginally improved accuracy in some cases, SLR offered comparable results with higher robustness. The analysis also identified systematic biases and discretization effects in tree-based models. These findings suggest that, under current data conditions, simpler models may offer reliable performance. Enhancing input data quality and incorporating additional meteorological features may yield greater improvements than increasing model complexity.
La estimación precisa de la irradiancia global horizontal (GHI) es fundamental para evaluar el recurso solar, especialmente en regiones con escasas mediciones terrestres. Este estudio evalúa el desempeño de tres modelos de aprendizaje automático—Regresión Lineal Simple (SLR), Extreme Gradient Boosting (XGB) y Perceptrón Multicapa (MLP)—para la adaptación al sitio de datos de GHI obtenidos por satélite en cinco ubicaciones del noroeste argentino. Se utilizaron dos productos satelitales, CAMS y LSA-SAF, como datos de entrada. Los modelos se evaluaron mediante métricas estándar (MBE, MAE, RMSE) y análisis de residuos. Los resultados indican que los datos de LSA-SAF generaron errores menores, especialmente en sitios de gran altitud. Aunque modelos complejos como MLP y XGB mejoraron levemente la precisión en algunos casos, SLR logró resultados comparables con mayor robustez. El análisis también evidenció sesgos sistemáticos y efectos de discretización en modelos basados enárboles. Estos hallazgos sugieren que, dadas las condiciones actuales de los datos, modelos simples pueden ofrecer un desempeño confiable. Mejoras significativas podrían lograrse mediante la incorporación de variables meteorológicas adicionales y datos de mayor calidad.
Facultad de Informática
description Accurate estimation of global horizontal irradiance (GHI) is essential for solar energy resource assessment, particularly in regions with limited ground-based measurements. This study evaluates the performance of three machine learning models—Simple Linear Regression (SLR), Extreme Gradient Boosting (XGB), and Multilayer Perceptron (MLP)—for the site adaptation of satellite-derived GHI data in five locations in Northwestern Argentina. Two satellite products, CAMS and LSA-SAF, were used as input data. The models were assessed using standard error metrics (MBE, MAE, RMSE), and their residual patterns were analyzed. Results show that LSA-SAF data led to lower errors compared to CAMS, especially in highaltitude sites. While complex models like MLP and XGB marginally improved accuracy in some cases, SLR offered comparable results with higher robustness. The analysis also identified systematic biases and discretization effects in tree-based models. These findings suggest that, under current data conditions, simpler models may offer reliable performance. Enhancing input data quality and incorporating additional meteorological features may yield greater improvements than increasing model complexity.
publishDate 2025
dc.date.none.fl_str_mv 2025-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/186891
url http://sedici.unlp.edu.ar/handle/10915/186891
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1666-6038
info:eu-repo/semantics/altIdentifier/doi/10.24215/16666038.25.e10.
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1848605864166948864
score 12.738264