Machine Learning for Site Adaptation of Satellite-Derived Solar Irradiance in Northwestern Argentina
- Autores
- Ledesma, Rubén; Salazar, Germán Ariel
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Accurate estimation of global horizontal irradiance (GHI) is essential for solar energy resource assessment, particularly in regions with limited ground-based measurements. This study evaluates the performance of three machine learning models—Simple Linear Regression (SLR), Extreme Gradient Boosting (XGB), and Multilayer Perceptron (MLP)—for the site adaptation of satellite-derived GHI data in five locations in Northwestern Argentina. Two satellite products, CAMS and LSA-SAF, were used as input data. The models were assessed using standard error metrics (MBE, MAE, RMSE), and their residual patterns were analyzed. Results show that LSA-SAF data led to lower errors compared to CAMS, especially in highaltitude sites. While complex models like MLP and XGB marginally improved accuracy in some cases, SLR offered comparable results with higher robustness. The analysis also identified systematic biases and discretization effects in tree-based models. These findings suggest that, under current data conditions, simpler models may offer reliable performance. Enhancing input data quality and incorporating additional meteorological features may yield greater improvements than increasing model complexity.
La estimación precisa de la irradiancia global horizontal (GHI) es fundamental para evaluar el recurso solar, especialmente en regiones con escasas mediciones terrestres. Este estudio evalúa el desempeño de tres modelos de aprendizaje automático—Regresión Lineal Simple (SLR), Extreme Gradient Boosting (XGB) y Perceptrón Multicapa (MLP)—para la adaptación al sitio de datos de GHI obtenidos por satélite en cinco ubicaciones del noroeste argentino. Se utilizaron dos productos satelitales, CAMS y LSA-SAF, como datos de entrada. Los modelos se evaluaron mediante métricas estándar (MBE, MAE, RMSE) y análisis de residuos. Los resultados indican que los datos de LSA-SAF generaron errores menores, especialmente en sitios de gran altitud. Aunque modelos complejos como MLP y XGB mejoraron levemente la precisión en algunos casos, SLR logró resultados comparables con mayor robustez. El análisis también evidenció sesgos sistemáticos y efectos de discretización en modelos basados enárboles. Estos hallazgos sugieren que, dadas las condiciones actuales de los datos, modelos simples pueden ofrecer un desempeño confiable. Mejoras significativas podrían lograrse mediante la incorporación de variables meteorológicas adicionales y datos de mayor calidad.
Facultad de Informática - Materia
-
Ciencias Informáticas
Solar irradiance
Site adaptation
Machine learning
Irradiancia solar
Adaptación al Sitio
Aprendizaje automático - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/186891
Ver los metadatos del registro completo
| id |
SEDICI_8c642836204ed1fd7cfa850eaf832318 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/186891 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Machine Learning for Site Adaptation of Satellite-Derived Solar Irradiance in Northwestern ArgentinaAprendizaje automático para la adaptación al sitio de irradiancia solar derivada de salites en el Noroeste ArgentinoLedesma, RubénSalazar, Germán ArielCiencias InformáticasSolar irradianceSite adaptationMachine learningIrradiancia solarAdaptación al SitioAprendizaje automáticoAccurate estimation of global horizontal irradiance (GHI) is essential for solar energy resource assessment, particularly in regions with limited ground-based measurements. This study evaluates the performance of three machine learning models—Simple Linear Regression (SLR), Extreme Gradient Boosting (XGB), and Multilayer Perceptron (MLP)—for the site adaptation of satellite-derived GHI data in five locations in Northwestern Argentina. Two satellite products, CAMS and LSA-SAF, were used as input data. The models were assessed using standard error metrics (MBE, MAE, RMSE), and their residual patterns were analyzed. Results show that LSA-SAF data led to lower errors compared to CAMS, especially in highaltitude sites. While complex models like MLP and XGB marginally improved accuracy in some cases, SLR offered comparable results with higher robustness. The analysis also identified systematic biases and discretization effects in tree-based models. These findings suggest that, under current data conditions, simpler models may offer reliable performance. Enhancing input data quality and incorporating additional meteorological features may yield greater improvements than increasing model complexity.La estimación precisa de la irradiancia global horizontal (GHI) es fundamental para evaluar el recurso solar, especialmente en regiones con escasas mediciones terrestres. Este estudio evalúa el desempeño de tres modelos de aprendizaje automático—Regresión Lineal Simple (SLR), Extreme Gradient Boosting (XGB) y Perceptrón Multicapa (MLP)—para la adaptación al sitio de datos de GHI obtenidos por satélite en cinco ubicaciones del noroeste argentino. Se utilizaron dos productos satelitales, CAMS y LSA-SAF, como datos de entrada. Los modelos se evaluaron mediante métricas estándar (MBE, MAE, RMSE) y análisis de residuos. Los resultados indican que los datos de LSA-SAF generaron errores menores, especialmente en sitios de gran altitud. Aunque modelos complejos como MLP y XGB mejoraron levemente la precisión en algunos casos, SLR logró resultados comparables con mayor robustez. El análisis también evidenció sesgos sistemáticos y efectos de discretización en modelos basados enárboles. Estos hallazgos sugieren que, dadas las condiciones actuales de los datos, modelos simples pueden ofrecer un desempeño confiable. Mejoras significativas podrían lograrse mediante la incorporación de variables meteorológicas adicionales y datos de mayor calidad.Facultad de Informática2025-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/186891enginfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/altIdentifier/doi/10.24215/16666038.25.e10.info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-11-12T11:15:38Zoai:sedici.unlp.edu.ar:10915/186891Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-11-12 11:15:39.142SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Machine Learning for Site Adaptation of Satellite-Derived Solar Irradiance in Northwestern Argentina Aprendizaje automático para la adaptación al sitio de irradiancia solar derivada de salites en el Noroeste Argentino |
| title |
Machine Learning for Site Adaptation of Satellite-Derived Solar Irradiance in Northwestern Argentina |
| spellingShingle |
Machine Learning for Site Adaptation of Satellite-Derived Solar Irradiance in Northwestern Argentina Ledesma, Rubén Ciencias Informáticas Solar irradiance Site adaptation Machine learning Irradiancia solar Adaptación al Sitio Aprendizaje automático |
| title_short |
Machine Learning for Site Adaptation of Satellite-Derived Solar Irradiance in Northwestern Argentina |
| title_full |
Machine Learning for Site Adaptation of Satellite-Derived Solar Irradiance in Northwestern Argentina |
| title_fullStr |
Machine Learning for Site Adaptation of Satellite-Derived Solar Irradiance in Northwestern Argentina |
| title_full_unstemmed |
Machine Learning for Site Adaptation of Satellite-Derived Solar Irradiance in Northwestern Argentina |
| title_sort |
Machine Learning for Site Adaptation of Satellite-Derived Solar Irradiance in Northwestern Argentina |
| dc.creator.none.fl_str_mv |
Ledesma, Rubén Salazar, Germán Ariel |
| author |
Ledesma, Rubén |
| author_facet |
Ledesma, Rubén Salazar, Germán Ariel |
| author_role |
author |
| author2 |
Salazar, Germán Ariel |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas Solar irradiance Site adaptation Machine learning Irradiancia solar Adaptación al Sitio Aprendizaje automático |
| topic |
Ciencias Informáticas Solar irradiance Site adaptation Machine learning Irradiancia solar Adaptación al Sitio Aprendizaje automático |
| dc.description.none.fl_txt_mv |
Accurate estimation of global horizontal irradiance (GHI) is essential for solar energy resource assessment, particularly in regions with limited ground-based measurements. This study evaluates the performance of three machine learning models—Simple Linear Regression (SLR), Extreme Gradient Boosting (XGB), and Multilayer Perceptron (MLP)—for the site adaptation of satellite-derived GHI data in five locations in Northwestern Argentina. Two satellite products, CAMS and LSA-SAF, were used as input data. The models were assessed using standard error metrics (MBE, MAE, RMSE), and their residual patterns were analyzed. Results show that LSA-SAF data led to lower errors compared to CAMS, especially in highaltitude sites. While complex models like MLP and XGB marginally improved accuracy in some cases, SLR offered comparable results with higher robustness. The analysis also identified systematic biases and discretization effects in tree-based models. These findings suggest that, under current data conditions, simpler models may offer reliable performance. Enhancing input data quality and incorporating additional meteorological features may yield greater improvements than increasing model complexity. La estimación precisa de la irradiancia global horizontal (GHI) es fundamental para evaluar el recurso solar, especialmente en regiones con escasas mediciones terrestres. Este estudio evalúa el desempeño de tres modelos de aprendizaje automático—Regresión Lineal Simple (SLR), Extreme Gradient Boosting (XGB) y Perceptrón Multicapa (MLP)—para la adaptación al sitio de datos de GHI obtenidos por satélite en cinco ubicaciones del noroeste argentino. Se utilizaron dos productos satelitales, CAMS y LSA-SAF, como datos de entrada. Los modelos se evaluaron mediante métricas estándar (MBE, MAE, RMSE) y análisis de residuos. Los resultados indican que los datos de LSA-SAF generaron errores menores, especialmente en sitios de gran altitud. Aunque modelos complejos como MLP y XGB mejoraron levemente la precisión en algunos casos, SLR logró resultados comparables con mayor robustez. El análisis también evidenció sesgos sistemáticos y efectos de discretización en modelos basados enárboles. Estos hallazgos sugieren que, dadas las condiciones actuales de los datos, modelos simples pueden ofrecer un desempeño confiable. Mejoras significativas podrían lograrse mediante la incorporación de variables meteorológicas adicionales y datos de mayor calidad. Facultad de Informática |
| description |
Accurate estimation of global horizontal irradiance (GHI) is essential for solar energy resource assessment, particularly in regions with limited ground-based measurements. This study evaluates the performance of three machine learning models—Simple Linear Regression (SLR), Extreme Gradient Boosting (XGB), and Multilayer Perceptron (MLP)—for the site adaptation of satellite-derived GHI data in five locations in Northwestern Argentina. Two satellite products, CAMS and LSA-SAF, were used as input data. The models were assessed using standard error metrics (MBE, MAE, RMSE), and their residual patterns were analyzed. Results show that LSA-SAF data led to lower errors compared to CAMS, especially in highaltitude sites. While complex models like MLP and XGB marginally improved accuracy in some cases, SLR offered comparable results with higher robustness. The analysis also identified systematic biases and discretization effects in tree-based models. These findings suggest that, under current data conditions, simpler models may offer reliable performance. Enhancing input data quality and incorporating additional meteorological features may yield greater improvements than increasing model complexity. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/186891 |
| url |
http://sedici.unlp.edu.ar/handle/10915/186891 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1666-6038 info:eu-repo/semantics/altIdentifier/doi/10.24215/16666038.25.e10. |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1848605864166948864 |
| score |
12.738264 |