Estimated and measured DNA, plant-chromosphere and erythemal-weighted irradiances at Barrow and South Pole (1979-2000)

Autores
Diaz, Susana; Nelson, Don; Deferrari, Guillermo Alejandro; Camilión, María Carolina
Año de publicación
2003
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In the last two decades as a consequence of ozone depletion there has been an increasing interest in the study of biological effects of ultraviolet radiation (UV). Spectral instruments, which provide detailed information on UV environmental conditions, have been in use systematically only for little more than a decade. These time series are still relatively short and information on spectral historical irradiance levels is not available. Many efforts have been carried out in inferring this information from other available data sets. One of them has been the use of statistical models. Spectral irradiances are available at South Pole (90.00S 0) and Barrow (71.18N, 156.47W) from the NSF UV Radiation Monitoring Program since 1991. In the present paper, daily-integrated biologically weighted irradiances for these sites are inferred back to 1979 using a multi-regressive model, obtaining time series that extend near the beginning of the Antarctic ozone depletion. These datasets are unique since the daily-integrated irradiances were calculated from irradiance measured hourly at the earth’s surface. The biologically weighted irradiances are estimated from irradiance measured with broadband instruments, ozone, and solar zenith angles. From daily-integrated irradiance, monthly means were also calculated. The RMS errors between the estimated and measured daily-integrated irradiances range from 4.69 to 7.49% at South Pole and from 9.57 to 15.20% at Barrow, while the monthly mean errors vary from 2.07 to 3% and 2.95 to 3.91%, respectively. Completing the databases with spectral measurements, the resulting time series extend from 1979 to 2000. Analyzing monthly values an increase relative to 1979–1981 during all years is observed at South Pole. Largest increases are observed for DNA and plant-chromosphere weighted irradiances during October. Although at a lower rate, an increase is also observed at Barrow during the spring. Maximum monthly increase at South Pole during October is near 1200% relative to 1979–1981, while the increase at Barrow is near one tenth of that percentage. Daily-integrated irradiance shows that a slight increase was present during the spring at South Pole for the period 1979–1981 paper, daily-integrated biologically weighted irradiances for these sites are inferred back to 1979 using a multi-regressive model, obtaining time series that extend near the beginning of the Antarctic ozone depletion. These datasets are unique since the daily-integrated irradiances were calculated from irradiance measured hourly at the earth’s surface. The biologically weighted irradiances are estimated from irradiance measured with broadband instruments, ozone, and solar zenith angles. From daily-integrated irradiance, monthly means were also calculated. The RMS errors between the estimated and measured daily-integrated irradiances range from 4.69 to 7.49% at South Pole and from 9.57 to 15.20% at Barrow, while the monthly mean errors vary from 2.07 to 3% and 2.95 to 3.91%, respectively. Completing the databases with spectral measurements, the resulting time series extend from 1979 to 2000. Analyzing monthly values an increase relative to 1979–1981 during all years is observed at South Pole. Largest increases are observed for DNA and plant-chromosphere weighted irradiances during October. Although at a lower rate, an increase is also observed at Barrow during the spring. Maximum monthly increase at South Pole during October is near 1200% relative to 1979–1981, while the increase at Barrow is near one tenth of that percentage. Daily-integrated irradiance shows that a slight increase was present during the spring at South Pole for the period 1979–1981 .00S 0) and Barrow (71.18N, 156.47W) from the NSF UV Radiation Monitoring Program since 1991. In the present paper, daily-integrated biologically weighted irradiances for these sites are inferred back to 1979 using a multi-regressive model, obtaining time series that extend near the beginning of the Antarctic ozone depletion. These datasets are unique since the daily-integrated irradiances were calculated from irradiance measured hourly at the earth’s surface. The biologically weighted irradiances are estimated from irradiance measured with broadband instruments, ozone, and solar zenith angles. From daily-integrated irradiance, monthly means were also calculated. The RMS errors between the estimated and measured daily-integrated irradiances range from 4.69 to 7.49% at South Pole and from 9.57 to 15.20% at Barrow, while the monthly mean errors vary from 2.07 to 3% and 2.95 to 3.91%, respectively. Completing the databases with spectral measurements, the resulting time series extend from 1979 to 2000. Analyzing monthly values an increase relative to 1979–1981 during all years is observed at South Pole. Largest increases are observed for DNA and plant-chromosphere weighted irradiances during October. Although at a lower rate, an increase is also observed at Barrow during the spring. Maximum monthly increase at South Pole during October is near 1200% relative to 1979–1981, while the increase at Barrow is near one tenth of that percentage. Daily-integrated irradiance shows that a slight increase was present during the spring at South Pole for the period 1979–1981.
Fil: Diaz, Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentina
Fil: Nelson, Don. Climate Monitoring and Diagnostics Laborator; Estados Unidos. National Oceanic and Atmospheric Administration; Estados Unidos
Fil: Deferrari, Guillermo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentina
Fil: Camilión, María Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentina
Materia
Climate impacts,O3,UV, Solar, radiation ,Irradiance
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/156816

id CONICETDig_25d8650e55de4561f0b5be25fc6b9064
oai_identifier_str oai:ri.conicet.gov.ar:11336/156816
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Estimated and measured DNA, plant-chromosphere and erythemal-weighted irradiances at Barrow and South Pole (1979-2000)Diaz, SusanaNelson, DonDeferrari, Guillermo AlejandroCamilión, María CarolinaClimate impacts,O3,UV, Solar, radiation ,Irradiancehttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1In the last two decades as a consequence of ozone depletion there has been an increasing interest in the study of biological effects of ultraviolet radiation (UV). Spectral instruments, which provide detailed information on UV environmental conditions, have been in use systematically only for little more than a decade. These time series are still relatively short and information on spectral historical irradiance levels is not available. Many efforts have been carried out in inferring this information from other available data sets. One of them has been the use of statistical models. Spectral irradiances are available at South Pole (90.00S 0) and Barrow (71.18N, 156.47W) from the NSF UV Radiation Monitoring Program since 1991. In the present paper, daily-integrated biologically weighted irradiances for these sites are inferred back to 1979 using a multi-regressive model, obtaining time series that extend near the beginning of the Antarctic ozone depletion. These datasets are unique since the daily-integrated irradiances were calculated from irradiance measured hourly at the earth’s surface. The biologically weighted irradiances are estimated from irradiance measured with broadband instruments, ozone, and solar zenith angles. From daily-integrated irradiance, monthly means were also calculated. The RMS errors between the estimated and measured daily-integrated irradiances range from 4.69 to 7.49% at South Pole and from 9.57 to 15.20% at Barrow, while the monthly mean errors vary from 2.07 to 3% and 2.95 to 3.91%, respectively. Completing the databases with spectral measurements, the resulting time series extend from 1979 to 2000. Analyzing monthly values an increase relative to 1979–1981 during all years is observed at South Pole. Largest increases are observed for DNA and plant-chromosphere weighted irradiances during October. Although at a lower rate, an increase is also observed at Barrow during the spring. Maximum monthly increase at South Pole during October is near 1200% relative to 1979–1981, while the increase at Barrow is near one tenth of that percentage. Daily-integrated irradiance shows that a slight increase was present during the spring at South Pole for the period 1979–1981 paper, daily-integrated biologically weighted irradiances for these sites are inferred back to 1979 using a multi-regressive model, obtaining time series that extend near the beginning of the Antarctic ozone depletion. These datasets are unique since the daily-integrated irradiances were calculated from irradiance measured hourly at the earth’s surface. The biologically weighted irradiances are estimated from irradiance measured with broadband instruments, ozone, and solar zenith angles. From daily-integrated irradiance, monthly means were also calculated. The RMS errors between the estimated and measured daily-integrated irradiances range from 4.69 to 7.49% at South Pole and from 9.57 to 15.20% at Barrow, while the monthly mean errors vary from 2.07 to 3% and 2.95 to 3.91%, respectively. Completing the databases with spectral measurements, the resulting time series extend from 1979 to 2000. Analyzing monthly values an increase relative to 1979–1981 during all years is observed at South Pole. Largest increases are observed for DNA and plant-chromosphere weighted irradiances during October. Although at a lower rate, an increase is also observed at Barrow during the spring. Maximum monthly increase at South Pole during October is near 1200% relative to 1979–1981, while the increase at Barrow is near one tenth of that percentage. Daily-integrated irradiance shows that a slight increase was present during the spring at South Pole for the period 1979–1981 .00S 0) and Barrow (71.18N, 156.47W) from the NSF UV Radiation Monitoring Program since 1991. In the present paper, daily-integrated biologically weighted irradiances for these sites are inferred back to 1979 using a multi-regressive model, obtaining time series that extend near the beginning of the Antarctic ozone depletion. These datasets are unique since the daily-integrated irradiances were calculated from irradiance measured hourly at the earth’s surface. The biologically weighted irradiances are estimated from irradiance measured with broadband instruments, ozone, and solar zenith angles. From daily-integrated irradiance, monthly means were also calculated. The RMS errors between the estimated and measured daily-integrated irradiances range from 4.69 to 7.49% at South Pole and from 9.57 to 15.20% at Barrow, while the monthly mean errors vary from 2.07 to 3% and 2.95 to 3.91%, respectively. Completing the databases with spectral measurements, the resulting time series extend from 1979 to 2000. Analyzing monthly values an increase relative to 1979–1981 during all years is observed at South Pole. Largest increases are observed for DNA and plant-chromosphere weighted irradiances during October. Although at a lower rate, an increase is also observed at Barrow during the spring. Maximum monthly increase at South Pole during October is near 1200% relative to 1979–1981, while the increase at Barrow is near one tenth of that percentage. Daily-integrated irradiance shows that a slight increase was present during the spring at South Pole for the period 1979–1981.Fil: Diaz, Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; ArgentinaFil: Nelson, Don. Climate Monitoring and Diagnostics Laborator; Estados Unidos. National Oceanic and Atmospheric Administration; Estados UnidosFil: Deferrari, Guillermo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; ArgentinaFil: Camilión, María Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; ArgentinaElsevier Science2003-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/156816Diaz, Susana; Nelson, Don; Deferrari, Guillermo Alejandro; Camilión, María Carolina; Estimated and measured DNA, plant-chromosphere and erythemal-weighted irradiances at Barrow and South Pole (1979-2000); Elsevier Science; Agricultural And Forest Meteorology; 120; 1-4; 12-2003; 69-820168-1923CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0168192303001771info:eu-repo/semantics/altIdentifier/doi/10.1016/j.agrformet.2003.08.017info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:17Zoai:ri.conicet.gov.ar:11336/156816instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:17.548CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Estimated and measured DNA, plant-chromosphere and erythemal-weighted irradiances at Barrow and South Pole (1979-2000)
title Estimated and measured DNA, plant-chromosphere and erythemal-weighted irradiances at Barrow and South Pole (1979-2000)
spellingShingle Estimated and measured DNA, plant-chromosphere and erythemal-weighted irradiances at Barrow and South Pole (1979-2000)
Diaz, Susana
Climate impacts,O3,UV, Solar, radiation ,Irradiance
title_short Estimated and measured DNA, plant-chromosphere and erythemal-weighted irradiances at Barrow and South Pole (1979-2000)
title_full Estimated and measured DNA, plant-chromosphere and erythemal-weighted irradiances at Barrow and South Pole (1979-2000)
title_fullStr Estimated and measured DNA, plant-chromosphere and erythemal-weighted irradiances at Barrow and South Pole (1979-2000)
title_full_unstemmed Estimated and measured DNA, plant-chromosphere and erythemal-weighted irradiances at Barrow and South Pole (1979-2000)
title_sort Estimated and measured DNA, plant-chromosphere and erythemal-weighted irradiances at Barrow and South Pole (1979-2000)
dc.creator.none.fl_str_mv Diaz, Susana
Nelson, Don
Deferrari, Guillermo Alejandro
Camilión, María Carolina
author Diaz, Susana
author_facet Diaz, Susana
Nelson, Don
Deferrari, Guillermo Alejandro
Camilión, María Carolina
author_role author
author2 Nelson, Don
Deferrari, Guillermo Alejandro
Camilión, María Carolina
author2_role author
author
author
dc.subject.none.fl_str_mv Climate impacts,O3,UV, Solar, radiation ,Irradiance
topic Climate impacts,O3,UV, Solar, radiation ,Irradiance
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In the last two decades as a consequence of ozone depletion there has been an increasing interest in the study of biological effects of ultraviolet radiation (UV). Spectral instruments, which provide detailed information on UV environmental conditions, have been in use systematically only for little more than a decade. These time series are still relatively short and information on spectral historical irradiance levels is not available. Many efforts have been carried out in inferring this information from other available data sets. One of them has been the use of statistical models. Spectral irradiances are available at South Pole (90.00S 0) and Barrow (71.18N, 156.47W) from the NSF UV Radiation Monitoring Program since 1991. In the present paper, daily-integrated biologically weighted irradiances for these sites are inferred back to 1979 using a multi-regressive model, obtaining time series that extend near the beginning of the Antarctic ozone depletion. These datasets are unique since the daily-integrated irradiances were calculated from irradiance measured hourly at the earth’s surface. The biologically weighted irradiances are estimated from irradiance measured with broadband instruments, ozone, and solar zenith angles. From daily-integrated irradiance, monthly means were also calculated. The RMS errors between the estimated and measured daily-integrated irradiances range from 4.69 to 7.49% at South Pole and from 9.57 to 15.20% at Barrow, while the monthly mean errors vary from 2.07 to 3% and 2.95 to 3.91%, respectively. Completing the databases with spectral measurements, the resulting time series extend from 1979 to 2000. Analyzing monthly values an increase relative to 1979–1981 during all years is observed at South Pole. Largest increases are observed for DNA and plant-chromosphere weighted irradiances during October. Although at a lower rate, an increase is also observed at Barrow during the spring. Maximum monthly increase at South Pole during October is near 1200% relative to 1979–1981, while the increase at Barrow is near one tenth of that percentage. Daily-integrated irradiance shows that a slight increase was present during the spring at South Pole for the period 1979–1981 paper, daily-integrated biologically weighted irradiances for these sites are inferred back to 1979 using a multi-regressive model, obtaining time series that extend near the beginning of the Antarctic ozone depletion. These datasets are unique since the daily-integrated irradiances were calculated from irradiance measured hourly at the earth’s surface. The biologically weighted irradiances are estimated from irradiance measured with broadband instruments, ozone, and solar zenith angles. From daily-integrated irradiance, monthly means were also calculated. The RMS errors between the estimated and measured daily-integrated irradiances range from 4.69 to 7.49% at South Pole and from 9.57 to 15.20% at Barrow, while the monthly mean errors vary from 2.07 to 3% and 2.95 to 3.91%, respectively. Completing the databases with spectral measurements, the resulting time series extend from 1979 to 2000. Analyzing monthly values an increase relative to 1979–1981 during all years is observed at South Pole. Largest increases are observed for DNA and plant-chromosphere weighted irradiances during October. Although at a lower rate, an increase is also observed at Barrow during the spring. Maximum monthly increase at South Pole during October is near 1200% relative to 1979–1981, while the increase at Barrow is near one tenth of that percentage. Daily-integrated irradiance shows that a slight increase was present during the spring at South Pole for the period 1979–1981 .00S 0) and Barrow (71.18N, 156.47W) from the NSF UV Radiation Monitoring Program since 1991. In the present paper, daily-integrated biologically weighted irradiances for these sites are inferred back to 1979 using a multi-regressive model, obtaining time series that extend near the beginning of the Antarctic ozone depletion. These datasets are unique since the daily-integrated irradiances were calculated from irradiance measured hourly at the earth’s surface. The biologically weighted irradiances are estimated from irradiance measured with broadband instruments, ozone, and solar zenith angles. From daily-integrated irradiance, monthly means were also calculated. The RMS errors between the estimated and measured daily-integrated irradiances range from 4.69 to 7.49% at South Pole and from 9.57 to 15.20% at Barrow, while the monthly mean errors vary from 2.07 to 3% and 2.95 to 3.91%, respectively. Completing the databases with spectral measurements, the resulting time series extend from 1979 to 2000. Analyzing monthly values an increase relative to 1979–1981 during all years is observed at South Pole. Largest increases are observed for DNA and plant-chromosphere weighted irradiances during October. Although at a lower rate, an increase is also observed at Barrow during the spring. Maximum monthly increase at South Pole during October is near 1200% relative to 1979–1981, while the increase at Barrow is near one tenth of that percentage. Daily-integrated irradiance shows that a slight increase was present during the spring at South Pole for the period 1979–1981.
Fil: Diaz, Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentina
Fil: Nelson, Don. Climate Monitoring and Diagnostics Laborator; Estados Unidos. National Oceanic and Atmospheric Administration; Estados Unidos
Fil: Deferrari, Guillermo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentina
Fil: Camilión, María Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentina
description In the last two decades as a consequence of ozone depletion there has been an increasing interest in the study of biological effects of ultraviolet radiation (UV). Spectral instruments, which provide detailed information on UV environmental conditions, have been in use systematically only for little more than a decade. These time series are still relatively short and information on spectral historical irradiance levels is not available. Many efforts have been carried out in inferring this information from other available data sets. One of them has been the use of statistical models. Spectral irradiances are available at South Pole (90.00S 0) and Barrow (71.18N, 156.47W) from the NSF UV Radiation Monitoring Program since 1991. In the present paper, daily-integrated biologically weighted irradiances for these sites are inferred back to 1979 using a multi-regressive model, obtaining time series that extend near the beginning of the Antarctic ozone depletion. These datasets are unique since the daily-integrated irradiances were calculated from irradiance measured hourly at the earth’s surface. The biologically weighted irradiances are estimated from irradiance measured with broadband instruments, ozone, and solar zenith angles. From daily-integrated irradiance, monthly means were also calculated. The RMS errors between the estimated and measured daily-integrated irradiances range from 4.69 to 7.49% at South Pole and from 9.57 to 15.20% at Barrow, while the monthly mean errors vary from 2.07 to 3% and 2.95 to 3.91%, respectively. Completing the databases with spectral measurements, the resulting time series extend from 1979 to 2000. Analyzing monthly values an increase relative to 1979–1981 during all years is observed at South Pole. Largest increases are observed for DNA and plant-chromosphere weighted irradiances during October. Although at a lower rate, an increase is also observed at Barrow during the spring. Maximum monthly increase at South Pole during October is near 1200% relative to 1979–1981, while the increase at Barrow is near one tenth of that percentage. Daily-integrated irradiance shows that a slight increase was present during the spring at South Pole for the period 1979–1981 paper, daily-integrated biologically weighted irradiances for these sites are inferred back to 1979 using a multi-regressive model, obtaining time series that extend near the beginning of the Antarctic ozone depletion. These datasets are unique since the daily-integrated irradiances were calculated from irradiance measured hourly at the earth’s surface. The biologically weighted irradiances are estimated from irradiance measured with broadband instruments, ozone, and solar zenith angles. From daily-integrated irradiance, monthly means were also calculated. The RMS errors between the estimated and measured daily-integrated irradiances range from 4.69 to 7.49% at South Pole and from 9.57 to 15.20% at Barrow, while the monthly mean errors vary from 2.07 to 3% and 2.95 to 3.91%, respectively. Completing the databases with spectral measurements, the resulting time series extend from 1979 to 2000. Analyzing monthly values an increase relative to 1979–1981 during all years is observed at South Pole. Largest increases are observed for DNA and plant-chromosphere weighted irradiances during October. Although at a lower rate, an increase is also observed at Barrow during the spring. Maximum monthly increase at South Pole during October is near 1200% relative to 1979–1981, while the increase at Barrow is near one tenth of that percentage. Daily-integrated irradiance shows that a slight increase was present during the spring at South Pole for the period 1979–1981 .00S 0) and Barrow (71.18N, 156.47W) from the NSF UV Radiation Monitoring Program since 1991. In the present paper, daily-integrated biologically weighted irradiances for these sites are inferred back to 1979 using a multi-regressive model, obtaining time series that extend near the beginning of the Antarctic ozone depletion. These datasets are unique since the daily-integrated irradiances were calculated from irradiance measured hourly at the earth’s surface. The biologically weighted irradiances are estimated from irradiance measured with broadband instruments, ozone, and solar zenith angles. From daily-integrated irradiance, monthly means were also calculated. The RMS errors between the estimated and measured daily-integrated irradiances range from 4.69 to 7.49% at South Pole and from 9.57 to 15.20% at Barrow, while the monthly mean errors vary from 2.07 to 3% and 2.95 to 3.91%, respectively. Completing the databases with spectral measurements, the resulting time series extend from 1979 to 2000. Analyzing monthly values an increase relative to 1979–1981 during all years is observed at South Pole. Largest increases are observed for DNA and plant-chromosphere weighted irradiances during October. Although at a lower rate, an increase is also observed at Barrow during the spring. Maximum monthly increase at South Pole during October is near 1200% relative to 1979–1981, while the increase at Barrow is near one tenth of that percentage. Daily-integrated irradiance shows that a slight increase was present during the spring at South Pole for the period 1979–1981.
publishDate 2003
dc.date.none.fl_str_mv 2003-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/156816
Diaz, Susana; Nelson, Don; Deferrari, Guillermo Alejandro; Camilión, María Carolina; Estimated and measured DNA, plant-chromosphere and erythemal-weighted irradiances at Barrow and South Pole (1979-2000); Elsevier Science; Agricultural And Forest Meteorology; 120; 1-4; 12-2003; 69-82
0168-1923
CONICET Digital
CONICET
url http://hdl.handle.net/11336/156816
identifier_str_mv Diaz, Susana; Nelson, Don; Deferrari, Guillermo Alejandro; Camilión, María Carolina; Estimated and measured DNA, plant-chromosphere and erythemal-weighted irradiances at Barrow and South Pole (1979-2000); Elsevier Science; Agricultural And Forest Meteorology; 120; 1-4; 12-2003; 69-82
0168-1923
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0168192303001771
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.agrformet.2003.08.017
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268915753811968
score 13.13397