Generación automática inteligente de resúmenes de textos con técnicas de soft computing
- Autores
- Villa Monte, Augusto
- Año de publicación
- 2019
- Idioma
- español castellano
- Tipo de recurso
- tesis doctoral
- Estado
- versión aceptada
- Colaborador/a o director/a de tesis
- Lanzarini, Laura Cristina
Olivas Varela, José Ángel
Naiouf, Marcelo
Leguizamón, Guillermo
Romero, Francisco Pascual - Descripción
- Hoy en día, Internet es el medio elegido para difundir información que luego se utiliza para resolver una amplia gama de problemas. Sin embargo, a medida que aumenta la cantidad de datos almacenados, su administración se hace más difícil y los usuarios comienzan a sufrir la llamada sobrecarga de información. Muchos son los sectores que, afectados por este fenómeno, no encuentran una solución al problema. El uso, la disponibilidad y el desarrollo de la tecnología en las últimas décadas han facilitado la recopilación de información y han permitido la generación de grandes depósitos de datos. En los últimos años, los repositorios de documentos de texto, como la Web, por ejemplo, han recibido más atención. Dado el crecimiento exponencial del volumen de información textual, se hizo imprescindible disponer de herramientas automáticas que, a partir de la información original, diferencien lo esencial de lo que no lo es. No toda la información tiene el mismo nivel de relevancia. No sólo en términos de contenido, sino también en términos de intereses. Obtener resúmenes de texto automáticamente puede constituir la solución a este problema, especialmente en aquellas áreas de la ciencia, como la medicina, en las que la investigación y la difusión de la información son fundamentales para su desarrollo. Esta tesis desarrolla dos estrategias diferentes para construir resúmenes automáticos de textos utilizando técnicas de Soft Computing. La primera utiliza una técnica de Optimización mediante Cúmulo de Partículas que, a partir de la representación vectorial de los textos, construye un resumen extractivo combinando adecuadamente varias métricas de puntuación. La segunda estrategia está relacionada con el estudio de la causalidad inspirado en el manejo de la incertidumbre por parte de la Lógica Borrosa o Difusa. Aquí, el análisis de los textos se realiza a través de la construcción de un grafo mediante el cual se obtienen las relaciones causales más importantes y las restricciones temporales que afectan a su interpretación. Ambas estrategias implican fundamentalmente la clasificación de la información y reducen el volumen del texto considerando al receptor del resumen construido en cada caso. El énfasis de esta tesis está puesto en la combinación de enfoques. Por un lado, se identifican los criterios que utiliza el usuario para seleccionar las partes relevantes de un documento. Por el otro, se construye un grafo a partir de patrones textuales útiles para la toma de decisiones. Para llevar a cabo los casos de estudio, se obtuvieron varios documentos médicos de Internet, un área para la cual se desarrolló una aplicación móvil que previene errores comunes en la administración de medicamentos dependientes del tiempo.
Tesis en cotutela con la Universidad de Castilla-La Mancha (UCLM, España).
Es revisado por: http://sedici.unlp.edu.ar/handle/10915/74468
Doctor en Ciencias Informáticas
Universidad Nacional de La Plata
Facultad de Informática - Materia
-
Ciencias Informáticas
Text analysis
resúmenes automáticos, procesamiento del lenguaje natural, lógica borrosa o difusa, cúmulos de partículas, causalidad, inteligencia artificial
Information Search and Retrieval - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-nd/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/74098
Ver los metadatos del registro completo
id |
SEDICI_8c4330ee447b8541c2d7b888b32dfc86 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/74098 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Generación automática inteligente de resúmenes de textos con técnicas de soft computingVilla Monte, AugustoCiencias InformáticasText analysisresúmenes automáticos, procesamiento del lenguaje natural, lógica borrosa o difusa, cúmulos de partículas, causalidad, inteligencia artificialInformation Search and RetrievalHoy en día, Internet es el medio elegido para difundir información que luego se utiliza para resolver una amplia gama de problemas. Sin embargo, a medida que aumenta la cantidad de datos almacenados, su administración se hace más difícil y los usuarios comienzan a sufrir la llamada sobrecarga de información. Muchos son los sectores que, afectados por este fenómeno, no encuentran una solución al problema. El uso, la disponibilidad y el desarrollo de la tecnología en las últimas décadas han facilitado la recopilación de información y han permitido la generación de grandes depósitos de datos. En los últimos años, los repositorios de documentos de texto, como la Web, por ejemplo, han recibido más atención. Dado el crecimiento exponencial del volumen de información textual, se hizo imprescindible disponer de herramientas automáticas que, a partir de la información original, diferencien lo esencial de lo que no lo es. No toda la información tiene el mismo nivel de relevancia. No sólo en términos de contenido, sino también en términos de intereses. Obtener resúmenes de texto automáticamente puede constituir la solución a este problema, especialmente en aquellas áreas de la ciencia, como la medicina, en las que la investigación y la difusión de la información son fundamentales para su desarrollo. Esta tesis desarrolla dos estrategias diferentes para construir resúmenes automáticos de textos utilizando técnicas de Soft Computing. La primera utiliza una técnica de Optimización mediante Cúmulo de Partículas que, a partir de la representación vectorial de los textos, construye un resumen extractivo combinando adecuadamente varias métricas de puntuación. La segunda estrategia está relacionada con el estudio de la causalidad inspirado en el manejo de la incertidumbre por parte de la Lógica Borrosa o Difusa. Aquí, el análisis de los textos se realiza a través de la construcción de un grafo mediante el cual se obtienen las relaciones causales más importantes y las restricciones temporales que afectan a su interpretación. Ambas estrategias implican fundamentalmente la clasificación de la información y reducen el volumen del texto considerando al receptor del resumen construido en cada caso. El énfasis de esta tesis está puesto en la combinación de enfoques. Por un lado, se identifican los criterios que utiliza el usuario para seleccionar las partes relevantes de un documento. Por el otro, se construye un grafo a partir de patrones textuales útiles para la toma de decisiones. Para llevar a cabo los casos de estudio, se obtuvieron varios documentos médicos de Internet, un área para la cual se desarrolló una aplicación móvil que previene errores comunes en la administración de medicamentos dependientes del tiempo.Tesis en cotutela con la Universidad de Castilla-La Mancha (UCLM, España).Es revisado por: http://sedici.unlp.edu.ar/handle/10915/74468Doctor en Ciencias InformáticasUniversidad Nacional de La PlataFacultad de InformáticaLanzarini, Laura CristinaOlivas Varela, José ÁngelNaiouf, MarceloLeguizamón, GuillermoRomero, Francisco Pascual2019-03-18info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionTesis de doctoradohttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/74098https://doi.org/10.35537/10915/74098spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:12:41Zoai:sedici.unlp.edu.ar:10915/74098Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:12:41.689SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Generación automática inteligente de resúmenes de textos con técnicas de soft computing |
title |
Generación automática inteligente de resúmenes de textos con técnicas de soft computing |
spellingShingle |
Generación automática inteligente de resúmenes de textos con técnicas de soft computing Villa Monte, Augusto Ciencias Informáticas Text analysis resúmenes automáticos, procesamiento del lenguaje natural, lógica borrosa o difusa, cúmulos de partículas, causalidad, inteligencia artificial Information Search and Retrieval |
title_short |
Generación automática inteligente de resúmenes de textos con técnicas de soft computing |
title_full |
Generación automática inteligente de resúmenes de textos con técnicas de soft computing |
title_fullStr |
Generación automática inteligente de resúmenes de textos con técnicas de soft computing |
title_full_unstemmed |
Generación automática inteligente de resúmenes de textos con técnicas de soft computing |
title_sort |
Generación automática inteligente de resúmenes de textos con técnicas de soft computing |
dc.creator.none.fl_str_mv |
Villa Monte, Augusto |
author |
Villa Monte, Augusto |
author_facet |
Villa Monte, Augusto |
author_role |
author |
dc.contributor.none.fl_str_mv |
Lanzarini, Laura Cristina Olivas Varela, José Ángel Naiouf, Marcelo Leguizamón, Guillermo Romero, Francisco Pascual |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Text analysis resúmenes automáticos, procesamiento del lenguaje natural, lógica borrosa o difusa, cúmulos de partículas, causalidad, inteligencia artificial Information Search and Retrieval |
topic |
Ciencias Informáticas Text analysis resúmenes automáticos, procesamiento del lenguaje natural, lógica borrosa o difusa, cúmulos de partículas, causalidad, inteligencia artificial Information Search and Retrieval |
dc.description.none.fl_txt_mv |
Hoy en día, Internet es el medio elegido para difundir información que luego se utiliza para resolver una amplia gama de problemas. Sin embargo, a medida que aumenta la cantidad de datos almacenados, su administración se hace más difícil y los usuarios comienzan a sufrir la llamada sobrecarga de información. Muchos son los sectores que, afectados por este fenómeno, no encuentran una solución al problema. El uso, la disponibilidad y el desarrollo de la tecnología en las últimas décadas han facilitado la recopilación de información y han permitido la generación de grandes depósitos de datos. En los últimos años, los repositorios de documentos de texto, como la Web, por ejemplo, han recibido más atención. Dado el crecimiento exponencial del volumen de información textual, se hizo imprescindible disponer de herramientas automáticas que, a partir de la información original, diferencien lo esencial de lo que no lo es. No toda la información tiene el mismo nivel de relevancia. No sólo en términos de contenido, sino también en términos de intereses. Obtener resúmenes de texto automáticamente puede constituir la solución a este problema, especialmente en aquellas áreas de la ciencia, como la medicina, en las que la investigación y la difusión de la información son fundamentales para su desarrollo. Esta tesis desarrolla dos estrategias diferentes para construir resúmenes automáticos de textos utilizando técnicas de Soft Computing. La primera utiliza una técnica de Optimización mediante Cúmulo de Partículas que, a partir de la representación vectorial de los textos, construye un resumen extractivo combinando adecuadamente varias métricas de puntuación. La segunda estrategia está relacionada con el estudio de la causalidad inspirado en el manejo de la incertidumbre por parte de la Lógica Borrosa o Difusa. Aquí, el análisis de los textos se realiza a través de la construcción de un grafo mediante el cual se obtienen las relaciones causales más importantes y las restricciones temporales que afectan a su interpretación. Ambas estrategias implican fundamentalmente la clasificación de la información y reducen el volumen del texto considerando al receptor del resumen construido en cada caso. El énfasis de esta tesis está puesto en la combinación de enfoques. Por un lado, se identifican los criterios que utiliza el usuario para seleccionar las partes relevantes de un documento. Por el otro, se construye un grafo a partir de patrones textuales útiles para la toma de decisiones. Para llevar a cabo los casos de estudio, se obtuvieron varios documentos médicos de Internet, un área para la cual se desarrolló una aplicación móvil que previene errores comunes en la administración de medicamentos dependientes del tiempo. Tesis en cotutela con la Universidad de Castilla-La Mancha (UCLM, España). Es revisado por: http://sedici.unlp.edu.ar/handle/10915/74468 Doctor en Ciencias Informáticas Universidad Nacional de La Plata Facultad de Informática |
description |
Hoy en día, Internet es el medio elegido para difundir información que luego se utiliza para resolver una amplia gama de problemas. Sin embargo, a medida que aumenta la cantidad de datos almacenados, su administración se hace más difícil y los usuarios comienzan a sufrir la llamada sobrecarga de información. Muchos son los sectores que, afectados por este fenómeno, no encuentran una solución al problema. El uso, la disponibilidad y el desarrollo de la tecnología en las últimas décadas han facilitado la recopilación de información y han permitido la generación de grandes depósitos de datos. En los últimos años, los repositorios de documentos de texto, como la Web, por ejemplo, han recibido más atención. Dado el crecimiento exponencial del volumen de información textual, se hizo imprescindible disponer de herramientas automáticas que, a partir de la información original, diferencien lo esencial de lo que no lo es. No toda la información tiene el mismo nivel de relevancia. No sólo en términos de contenido, sino también en términos de intereses. Obtener resúmenes de texto automáticamente puede constituir la solución a este problema, especialmente en aquellas áreas de la ciencia, como la medicina, en las que la investigación y la difusión de la información son fundamentales para su desarrollo. Esta tesis desarrolla dos estrategias diferentes para construir resúmenes automáticos de textos utilizando técnicas de Soft Computing. La primera utiliza una técnica de Optimización mediante Cúmulo de Partículas que, a partir de la representación vectorial de los textos, construye un resumen extractivo combinando adecuadamente varias métricas de puntuación. La segunda estrategia está relacionada con el estudio de la causalidad inspirado en el manejo de la incertidumbre por parte de la Lógica Borrosa o Difusa. Aquí, el análisis de los textos se realiza a través de la construcción de un grafo mediante el cual se obtienen las relaciones causales más importantes y las restricciones temporales que afectan a su interpretación. Ambas estrategias implican fundamentalmente la clasificación de la información y reducen el volumen del texto considerando al receptor del resumen construido en cada caso. El énfasis de esta tesis está puesto en la combinación de enfoques. Por un lado, se identifican los criterios que utiliza el usuario para seleccionar las partes relevantes de un documento. Por el otro, se construye un grafo a partir de patrones textuales útiles para la toma de decisiones. Para llevar a cabo los casos de estudio, se obtuvieron varios documentos médicos de Internet, un área para la cual se desarrolló una aplicación móvil que previene errores comunes en la administración de medicamentos dependientes del tiempo. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-03-18 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/acceptedVersion Tesis de doctorado http://purl.org/coar/resource_type/c_db06 info:ar-repo/semantics/tesisDoctoral |
format |
doctoralThesis |
status_str |
acceptedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/74098 https://doi.org/10.35537/10915/74098 |
url |
http://sedici.unlp.edu.ar/handle/10915/74098 https://doi.org/10.35537/10915/74098 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/4.0/ Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615997277863936 |
score |
13.070432 |