Paralelización de problemas de búsqueda en grafos en una arquitectura tipo cluster : Análisis de performance

Autores
Sanz, Victoria María
Año de publicación
2009
Idioma
español castellano
Tipo de recurso
tesis de grado
Estado
versión aceptada
Colaborador/a o director/a de tesis
De Giusti, Armando Eduardo
Naiouf, Marcelo
Descripción
Los problemas de optimización discreta, también conocidos como problemas combinatorios, surgen en diversas áreas y en general se resuelven utilizando técnicas que buscan una solución en el espacio de estados implícito del problema. Debido a la alta complejidad computacional de esta clase de problemas, las búsquedas exhaustivas se vuelven inaceptables, por lo cual se han desarrollado algoritmos heurísticos que utilizan funciones para evaluar el costo de los nodos y de este modo procesar primero los nodos que se estima están más cercanos al nodo “solución óptima”. Es de interés el desarrollo de heurísticas más potentes y algoritmos paralelos que resuelvan los problemas de optimización discreta de forma eficiente, con el fin de resolver instancias cada vez más grandes y dado que algunos problemas requieren soluciones en tiempo real, el paralelismo es en muchos casos la única forma de obtener el tiempo de respuesta esperado. En este marco, este trabajo toma como caso de estudio un problema de optimización clásico llamado Puzzle N2-1, y presenta una solución secuencial basada en el algoritmo A*. Se estudian variantes de la función heurística clásica (basadas en la Distancia de Manhattan) y se expone un trabajo experimental para analizar las mejoras en el rendimiento producidas, partiendo de diferentes configuraciones iniciales. Se propone una solución paralela al problema del Puzzle N2-1 sobre una arquitectura tipo cluster, y se analiza el speedup, la eficiencia, y la superlinealidad a medida que se escala el número de procesadores y el tamaño del problema (N). Se presenta además una generalización del problema para su aplicación a la planificación de movimientos de robots con múltiples objetivos.
Licenciado en Informática
Universidad Nacional de La Plata
Facultad de Informática
Materia
Ciencias Informáticas
búsqueda y recuperación de información
Heuristic methods
Optimization
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/4008

id SEDICI_8b9391aa0bf3be9b99671b18fe8d239b
oai_identifier_str oai:sedici.unlp.edu.ar:10915/4008
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Paralelización de problemas de búsqueda en grafos en una arquitectura tipo cluster : Análisis de performanceSanz, Victoria MaríaCiencias Informáticasbúsqueda y recuperación de informaciónHeuristic methodsOptimizationLos problemas de optimización discreta, también conocidos como problemas combinatorios, surgen en diversas áreas y en general se resuelven utilizando técnicas que buscan una solución en el espacio de estados implícito del problema. Debido a la alta complejidad computacional de esta clase de problemas, las búsquedas exhaustivas se vuelven inaceptables, por lo cual se han desarrollado algoritmos heurísticos que utilizan funciones para evaluar el costo de los nodos y de este modo procesar primero los nodos que se estima están más cercanos al nodo “solución óptima”. Es de interés el desarrollo de heurísticas más potentes y algoritmos paralelos que resuelvan los problemas de optimización discreta de forma eficiente, con el fin de resolver instancias cada vez más grandes y dado que algunos problemas requieren soluciones en tiempo real, el paralelismo es en muchos casos la única forma de obtener el tiempo de respuesta esperado. En este marco, este trabajo toma como caso de estudio un problema de optimización clásico llamado Puzzle N<SUP>2</SUP>-1, y presenta una solución secuencial basada en el algoritmo A*. Se estudian variantes de la función heurística clásica (basadas en la Distancia de Manhattan) y se expone un trabajo experimental para analizar las mejoras en el rendimiento producidas, partiendo de diferentes configuraciones iniciales. Se propone una solución paralela al problema del Puzzle N<SUP>2</SUP>-1 sobre una arquitectura tipo cluster, y se analiza el speedup, la eficiencia, y la superlinealidad a medida que se escala el número de procesadores y el tamaño del problema (N). Se presenta además una generalización del problema para su aplicación a la planificación de movimientos de robots con múltiples objetivos.Licenciado en InformáticaUniversidad Nacional de La PlataFacultad de InformáticaDe Giusti, Armando EduardoNaiouf, Marcelo2009info:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionTesis de gradohttp://purl.org/coar/resource_type/c_7a1finfo:ar-repo/semantics/tesisDeGradoapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/4008spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:49:26Zoai:sedici.unlp.edu.ar:10915/4008Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:49:26.735SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Paralelización de problemas de búsqueda en grafos en una arquitectura tipo cluster : Análisis de performance
title Paralelización de problemas de búsqueda en grafos en una arquitectura tipo cluster : Análisis de performance
spellingShingle Paralelización de problemas de búsqueda en grafos en una arquitectura tipo cluster : Análisis de performance
Sanz, Victoria María
Ciencias Informáticas
búsqueda y recuperación de información
Heuristic methods
Optimization
title_short Paralelización de problemas de búsqueda en grafos en una arquitectura tipo cluster : Análisis de performance
title_full Paralelización de problemas de búsqueda en grafos en una arquitectura tipo cluster : Análisis de performance
title_fullStr Paralelización de problemas de búsqueda en grafos en una arquitectura tipo cluster : Análisis de performance
title_full_unstemmed Paralelización de problemas de búsqueda en grafos en una arquitectura tipo cluster : Análisis de performance
title_sort Paralelización de problemas de búsqueda en grafos en una arquitectura tipo cluster : Análisis de performance
dc.creator.none.fl_str_mv Sanz, Victoria María
author Sanz, Victoria María
author_facet Sanz, Victoria María
author_role author
dc.contributor.none.fl_str_mv De Giusti, Armando Eduardo
Naiouf, Marcelo
dc.subject.none.fl_str_mv Ciencias Informáticas
búsqueda y recuperación de información
Heuristic methods
Optimization
topic Ciencias Informáticas
búsqueda y recuperación de información
Heuristic methods
Optimization
dc.description.none.fl_txt_mv Los problemas de optimización discreta, también conocidos como problemas combinatorios, surgen en diversas áreas y en general se resuelven utilizando técnicas que buscan una solución en el espacio de estados implícito del problema. Debido a la alta complejidad computacional de esta clase de problemas, las búsquedas exhaustivas se vuelven inaceptables, por lo cual se han desarrollado algoritmos heurísticos que utilizan funciones para evaluar el costo de los nodos y de este modo procesar primero los nodos que se estima están más cercanos al nodo “solución óptima”. Es de interés el desarrollo de heurísticas más potentes y algoritmos paralelos que resuelvan los problemas de optimización discreta de forma eficiente, con el fin de resolver instancias cada vez más grandes y dado que algunos problemas requieren soluciones en tiempo real, el paralelismo es en muchos casos la única forma de obtener el tiempo de respuesta esperado. En este marco, este trabajo toma como caso de estudio un problema de optimización clásico llamado Puzzle N<SUP>2</SUP>-1, y presenta una solución secuencial basada en el algoritmo A*. Se estudian variantes de la función heurística clásica (basadas en la Distancia de Manhattan) y se expone un trabajo experimental para analizar las mejoras en el rendimiento producidas, partiendo de diferentes configuraciones iniciales. Se propone una solución paralela al problema del Puzzle N<SUP>2</SUP>-1 sobre una arquitectura tipo cluster, y se analiza el speedup, la eficiencia, y la superlinealidad a medida que se escala el número de procesadores y el tamaño del problema (N). Se presenta además una generalización del problema para su aplicación a la planificación de movimientos de robots con múltiples objetivos.
Licenciado en Informática
Universidad Nacional de La Plata
Facultad de Informática
description Los problemas de optimización discreta, también conocidos como problemas combinatorios, surgen en diversas áreas y en general se resuelven utilizando técnicas que buscan una solución en el espacio de estados implícito del problema. Debido a la alta complejidad computacional de esta clase de problemas, las búsquedas exhaustivas se vuelven inaceptables, por lo cual se han desarrollado algoritmos heurísticos que utilizan funciones para evaluar el costo de los nodos y de este modo procesar primero los nodos que se estima están más cercanos al nodo “solución óptima”. Es de interés el desarrollo de heurísticas más potentes y algoritmos paralelos que resuelvan los problemas de optimización discreta de forma eficiente, con el fin de resolver instancias cada vez más grandes y dado que algunos problemas requieren soluciones en tiempo real, el paralelismo es en muchos casos la única forma de obtener el tiempo de respuesta esperado. En este marco, este trabajo toma como caso de estudio un problema de optimización clásico llamado Puzzle N<SUP>2</SUP>-1, y presenta una solución secuencial basada en el algoritmo A*. Se estudian variantes de la función heurística clásica (basadas en la Distancia de Manhattan) y se expone un trabajo experimental para analizar las mejoras en el rendimiento producidas, partiendo de diferentes configuraciones iniciales. Se propone una solución paralela al problema del Puzzle N<SUP>2</SUP>-1 sobre una arquitectura tipo cluster, y se analiza el speedup, la eficiencia, y la superlinealidad a medida que se escala el número de procesadores y el tamaño del problema (N). Se presenta además una generalización del problema para su aplicación a la planificación de movimientos de robots con múltiples objetivos.
publishDate 2009
dc.date.none.fl_str_mv 2009
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
info:eu-repo/semantics/acceptedVersion
Tesis de grado
http://purl.org/coar/resource_type/c_7a1f
info:ar-repo/semantics/tesisDeGrado
format bachelorThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/4008
url http://sedici.unlp.edu.ar/handle/10915/4008
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615747112796160
score 13.070432