Modular Hamiltonian for holographic excited states

Autores
Arias, Raúl Eduardo; Botta Cantcheff, Marcelo Ángel Nicolás; Martínez, Pedro Jorge; Zárate Chahín, Juan Felipe
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work we study the Tomita-Takesaki construction for a family of excited states that, in a strongly coupled CFT—at large N—correspond to coherent states in an asymptotically AdS spacetime geometry. We compute the modular flow and modular Hamiltonian associated to these excited states in the Rindler wedge and for a ball shaped entangling surface. Using holography, one can compute the bulk modular flow and construct the Tomita-Takesaki theory for these cases. We also discuss generalizations of the entanglement regions in the bulk and how to evaluate the modular Hamiltonian in a large N approximation. Finally, we extend the holographic Banks, Douglas, Horowitz and Matinec (BDHM) formula to compute the modular evolution of operators in the corresponding CFT algebra, and propose this as a more general prescription.
Facultad de Ciencias Exactas
Instituto de Física La Plata
Materia
Ciencias Exactas
Física
Conformal field theory
Gauge-gravity dualities
Quantum field theory
Particles & Fields
Gravitation, Cosmology & Astrophysics
Quantum Information
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/131884

id SEDICI_89155f4792b66721e6d364c7639dfee2
oai_identifier_str oai:sedici.unlp.edu.ar:10915/131884
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Modular Hamiltonian for holographic excited statesArias, Raúl EduardoBotta Cantcheff, Marcelo Ángel NicolásMartínez, Pedro JorgeZárate Chahín, Juan FelipeCiencias ExactasFísicaConformal field theoryGauge-gravity dualitiesQuantum field theoryParticles & FieldsGravitation, Cosmology & AstrophysicsQuantum InformationIn this work we study the Tomita-Takesaki construction for a family of excited states that, in a strongly coupled CFT—at large N—correspond to coherent states in an asymptotically AdS spacetime geometry. We compute the modular flow and modular Hamiltonian associated to these excited states in the Rindler wedge and for a ball shaped entangling surface. Using holography, one can compute the bulk modular flow and construct the Tomita-Takesaki theory for these cases. We also discuss generalizations of the entanglement regions in the bulk and how to evaluate the modular Hamiltonian in a large N approximation. Finally, we extend the holographic Banks, Douglas, Horowitz and Matinec (BDHM) formula to compute the modular evolution of operators in the corresponding CFT algebra, and propose this as a more general prescription.Facultad de Ciencias ExactasInstituto de Física La Plata2020-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/131884enginfo:eu-repo/semantics/altIdentifier/issn/2470-0010info:eu-repo/semantics/altIdentifier/issn/2470-0029info:eu-repo/semantics/altIdentifier/doi/10.1103/physrevd.102.026021info:eu-repo/semantics/altIdentifier/arxiv/2002.04637info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-11-12T10:56:44Zoai:sedici.unlp.edu.ar:10915/131884Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-11-12 10:56:45.181SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Modular Hamiltonian for holographic excited states
title Modular Hamiltonian for holographic excited states
spellingShingle Modular Hamiltonian for holographic excited states
Arias, Raúl Eduardo
Ciencias Exactas
Física
Conformal field theory
Gauge-gravity dualities
Quantum field theory
Particles & Fields
Gravitation, Cosmology & Astrophysics
Quantum Information
title_short Modular Hamiltonian for holographic excited states
title_full Modular Hamiltonian for holographic excited states
title_fullStr Modular Hamiltonian for holographic excited states
title_full_unstemmed Modular Hamiltonian for holographic excited states
title_sort Modular Hamiltonian for holographic excited states
dc.creator.none.fl_str_mv Arias, Raúl Eduardo
Botta Cantcheff, Marcelo Ángel Nicolás
Martínez, Pedro Jorge
Zárate Chahín, Juan Felipe
author Arias, Raúl Eduardo
author_facet Arias, Raúl Eduardo
Botta Cantcheff, Marcelo Ángel Nicolás
Martínez, Pedro Jorge
Zárate Chahín, Juan Felipe
author_role author
author2 Botta Cantcheff, Marcelo Ángel Nicolás
Martínez, Pedro Jorge
Zárate Chahín, Juan Felipe
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Exactas
Física
Conformal field theory
Gauge-gravity dualities
Quantum field theory
Particles & Fields
Gravitation, Cosmology & Astrophysics
Quantum Information
topic Ciencias Exactas
Física
Conformal field theory
Gauge-gravity dualities
Quantum field theory
Particles & Fields
Gravitation, Cosmology & Astrophysics
Quantum Information
dc.description.none.fl_txt_mv In this work we study the Tomita-Takesaki construction for a family of excited states that, in a strongly coupled CFT—at large N—correspond to coherent states in an asymptotically AdS spacetime geometry. We compute the modular flow and modular Hamiltonian associated to these excited states in the Rindler wedge and for a ball shaped entangling surface. Using holography, one can compute the bulk modular flow and construct the Tomita-Takesaki theory for these cases. We also discuss generalizations of the entanglement regions in the bulk and how to evaluate the modular Hamiltonian in a large N approximation. Finally, we extend the holographic Banks, Douglas, Horowitz and Matinec (BDHM) formula to compute the modular evolution of operators in the corresponding CFT algebra, and propose this as a more general prescription.
Facultad de Ciencias Exactas
Instituto de Física La Plata
description In this work we study the Tomita-Takesaki construction for a family of excited states that, in a strongly coupled CFT—at large N—correspond to coherent states in an asymptotically AdS spacetime geometry. We compute the modular flow and modular Hamiltonian associated to these excited states in the Rindler wedge and for a ball shaped entangling surface. Using holography, one can compute the bulk modular flow and construct the Tomita-Takesaki theory for these cases. We also discuss generalizations of the entanglement regions in the bulk and how to evaluate the modular Hamiltonian in a large N approximation. Finally, we extend the holographic Banks, Douglas, Horowitz and Matinec (BDHM) formula to compute the modular evolution of operators in the corresponding CFT algebra, and propose this as a more general prescription.
publishDate 2020
dc.date.none.fl_str_mv 2020-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/131884
url http://sedici.unlp.edu.ar/handle/10915/131884
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/2470-0010
info:eu-repo/semantics/altIdentifier/issn/2470-0029
info:eu-repo/semantics/altIdentifier/doi/10.1103/physrevd.102.026021
info:eu-repo/semantics/altIdentifier/arxiv/2002.04637
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1848605674897932288
score 12.976206