Bone marrow adipocytes alteration in an in vitro model of Gaucher Disease
- Autores
- Crivaro, Andrea Natalia; Mucci, Juan Marcos; Bondar, Constanza María; Ormazabal, Maximiliano Emanuel; Vaena, Emilio; Delpino, María Victoria
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Gaucher disease (GD) is caused by biallelic pathogenic variants in GBA1 gene that encodes the lysosomal enzyme glucocerebrosidase. Up to now, specific treatment for GD cannot completely reverse bone complications. Bone is composed of different cell types; including osteoblasts, osteocytes and osteoclasts. Osteoblasts are present on bone surfaces and are derived from local mesenchymal stem cells (MSCs). Depending on environment conditions, MSCs could differentiate into osteoblasts and adipocytes. Mature adipocytes-secreted adipokines and free fatty acids affect both osteoblasts and osteoclasts formation/activity and therefore mediate skeletal homeostasis. The aim of this study was to evaluate possible alterations in GD adipocyte (GD Ad) that could contribute to bone complications. MSCs were grown in adipogenic media in order to evaluate expression of differentiation markers as PPAR-γ. PPAR-γ was observed into the nucleus of GD Ad, indicating that these cells are properly stimulated. However, these cells accumulate lesser lipid droplets (LDs) than Control Ad. In order to study lipid droplet metabolism, we evaluated the lipolysis of these structures by the measurement of free glycerol in culture supernatant. Our results indicated that GD Ad had an alteration in this process, evidenced by an increase in glycerol release. We have also evaluated two enzymes involved in LDs synthesis: fatty acid synthase (FASN) and stearoylcoenzyme A desaturase 1 (SCD1). The transcription of these genes was decreased in GD Ad, suggesting a dysfunction in the synthesis of LDs. In conclusion, our results show an alteration in LDs metabolism of GD Ad, independent of adipocyte differentiation process. This alteration would be caused by an increase in lipolysis in early stages of differentiation and also by a reduction of lipid synthesis, which could contribute with the skeletal imbalance in GD.
Instituto de Estudios Inmunológicos y Fisiopatológicos - Materia
-
Biología
Gaucher
MSCs
Adipocytes
Bone
Lipid droplets - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-nd/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/160261
Ver los metadatos del registro completo
id |
SEDICI_87a3d5a360e41cc8d8f2f6f689faa1a6 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/160261 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Bone marrow adipocytes alteration in an in vitro model of Gaucher DiseaseCrivaro, Andrea NataliaMucci, Juan MarcosBondar, Constanza MaríaOrmazabal, Maximiliano EmanuelVaena, EmilioDelpino, María VictoriaBiologíaGaucherMSCsAdipocytesBoneLipid dropletsGaucher disease (GD) is caused by biallelic pathogenic variants in GBA1 gene that encodes the lysosomal enzyme glucocerebrosidase. Up to now, specific treatment for GD cannot completely reverse bone complications. Bone is composed of different cell types; including osteoblasts, osteocytes and osteoclasts. Osteoblasts are present on bone surfaces and are derived from local mesenchymal stem cells (MSCs). Depending on environment conditions, MSCs could differentiate into osteoblasts and adipocytes. Mature adipocytes-secreted adipokines and free fatty acids affect both osteoblasts and osteoclasts formation/activity and therefore mediate skeletal homeostasis. The aim of this study was to evaluate possible alterations in GD adipocyte (GD Ad) that could contribute to bone complications. MSCs were grown in adipogenic media in order to evaluate expression of differentiation markers as PPAR-γ. PPAR-γ was observed into the nucleus of GD Ad, indicating that these cells are properly stimulated. However, these cells accumulate lesser lipid droplets (LDs) than Control Ad. In order to study lipid droplet metabolism, we evaluated the lipolysis of these structures by the measurement of free glycerol in culture supernatant. Our results indicated that GD Ad had an alteration in this process, evidenced by an increase in glycerol release. We have also evaluated two enzymes involved in LDs synthesis: fatty acid synthase (FASN) and stearoylcoenzyme A desaturase 1 (SCD1). The transcription of these genes was decreased in GD Ad, suggesting a dysfunction in the synthesis of LDs. In conclusion, our results show an alteration in LDs metabolism of GD Ad, independent of adipocyte differentiation process. This alteration would be caused by an increase in lipolysis in early stages of differentiation and also by a reduction of lipid synthesis, which could contribute with the skeletal imbalance in GD.Instituto de Estudios Inmunológicos y Fisiopatológicos2023info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/160261enginfo:eu-repo/semantics/altIdentifier/issn/2214-4269info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ymgmr.2023.100980info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:33:48Zoai:sedici.unlp.edu.ar:10915/160261Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:33:48.278SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Bone marrow adipocytes alteration in an in vitro model of Gaucher Disease |
title |
Bone marrow adipocytes alteration in an in vitro model of Gaucher Disease |
spellingShingle |
Bone marrow adipocytes alteration in an in vitro model of Gaucher Disease Crivaro, Andrea Natalia Biología Gaucher MSCs Adipocytes Bone Lipid droplets |
title_short |
Bone marrow adipocytes alteration in an in vitro model of Gaucher Disease |
title_full |
Bone marrow adipocytes alteration in an in vitro model of Gaucher Disease |
title_fullStr |
Bone marrow adipocytes alteration in an in vitro model of Gaucher Disease |
title_full_unstemmed |
Bone marrow adipocytes alteration in an in vitro model of Gaucher Disease |
title_sort |
Bone marrow adipocytes alteration in an in vitro model of Gaucher Disease |
dc.creator.none.fl_str_mv |
Crivaro, Andrea Natalia Mucci, Juan Marcos Bondar, Constanza María Ormazabal, Maximiliano Emanuel Vaena, Emilio Delpino, María Victoria |
author |
Crivaro, Andrea Natalia |
author_facet |
Crivaro, Andrea Natalia Mucci, Juan Marcos Bondar, Constanza María Ormazabal, Maximiliano Emanuel Vaena, Emilio Delpino, María Victoria |
author_role |
author |
author2 |
Mucci, Juan Marcos Bondar, Constanza María Ormazabal, Maximiliano Emanuel Vaena, Emilio Delpino, María Victoria |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Biología Gaucher MSCs Adipocytes Bone Lipid droplets |
topic |
Biología Gaucher MSCs Adipocytes Bone Lipid droplets |
dc.description.none.fl_txt_mv |
Gaucher disease (GD) is caused by biallelic pathogenic variants in GBA1 gene that encodes the lysosomal enzyme glucocerebrosidase. Up to now, specific treatment for GD cannot completely reverse bone complications. Bone is composed of different cell types; including osteoblasts, osteocytes and osteoclasts. Osteoblasts are present on bone surfaces and are derived from local mesenchymal stem cells (MSCs). Depending on environment conditions, MSCs could differentiate into osteoblasts and adipocytes. Mature adipocytes-secreted adipokines and free fatty acids affect both osteoblasts and osteoclasts formation/activity and therefore mediate skeletal homeostasis. The aim of this study was to evaluate possible alterations in GD adipocyte (GD Ad) that could contribute to bone complications. MSCs were grown in adipogenic media in order to evaluate expression of differentiation markers as PPAR-γ. PPAR-γ was observed into the nucleus of GD Ad, indicating that these cells are properly stimulated. However, these cells accumulate lesser lipid droplets (LDs) than Control Ad. In order to study lipid droplet metabolism, we evaluated the lipolysis of these structures by the measurement of free glycerol in culture supernatant. Our results indicated that GD Ad had an alteration in this process, evidenced by an increase in glycerol release. We have also evaluated two enzymes involved in LDs synthesis: fatty acid synthase (FASN) and stearoylcoenzyme A desaturase 1 (SCD1). The transcription of these genes was decreased in GD Ad, suggesting a dysfunction in the synthesis of LDs. In conclusion, our results show an alteration in LDs metabolism of GD Ad, independent of adipocyte differentiation process. This alteration would be caused by an increase in lipolysis in early stages of differentiation and also by a reduction of lipid synthesis, which could contribute with the skeletal imbalance in GD. Instituto de Estudios Inmunológicos y Fisiopatológicos |
description |
Gaucher disease (GD) is caused by biallelic pathogenic variants in GBA1 gene that encodes the lysosomal enzyme glucocerebrosidase. Up to now, specific treatment for GD cannot completely reverse bone complications. Bone is composed of different cell types; including osteoblasts, osteocytes and osteoclasts. Osteoblasts are present on bone surfaces and are derived from local mesenchymal stem cells (MSCs). Depending on environment conditions, MSCs could differentiate into osteoblasts and adipocytes. Mature adipocytes-secreted adipokines and free fatty acids affect both osteoblasts and osteoclasts formation/activity and therefore mediate skeletal homeostasis. The aim of this study was to evaluate possible alterations in GD adipocyte (GD Ad) that could contribute to bone complications. MSCs were grown in adipogenic media in order to evaluate expression of differentiation markers as PPAR-γ. PPAR-γ was observed into the nucleus of GD Ad, indicating that these cells are properly stimulated. However, these cells accumulate lesser lipid droplets (LDs) than Control Ad. In order to study lipid droplet metabolism, we evaluated the lipolysis of these structures by the measurement of free glycerol in culture supernatant. Our results indicated that GD Ad had an alteration in this process, evidenced by an increase in glycerol release. We have also evaluated two enzymes involved in LDs synthesis: fatty acid synthase (FASN) and stearoylcoenzyme A desaturase 1 (SCD1). The transcription of these genes was decreased in GD Ad, suggesting a dysfunction in the synthesis of LDs. In conclusion, our results show an alteration in LDs metabolism of GD Ad, independent of adipocyte differentiation process. This alteration would be caused by an increase in lipolysis in early stages of differentiation and also by a reduction of lipid synthesis, which could contribute with the skeletal imbalance in GD. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/160261 |
url |
http://sedici.unlp.edu.ar/handle/10915/160261 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/2214-4269 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ymgmr.2023.100980 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/4.0/ Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846064367494234112 |
score |
13.22299 |