Parameter Tuning of a Parallel Hierarchical Island Based Model
- Autores
- Tardivo, María Laura; Caymes Scutari, Paola; Méndez Garabetti, Miguel; BIanchini, Germán
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- One of the major drawbacks of using Evolutionary Algo- rithms is the determination of the input parameters, since they have an important in uence in the e ectiveness of the search. When using Par- allel Evolutionary Algorithms, such drawbacks are magni ed, since they incorporates new parameters needed to con gure the inherent charac- teristics of the parallel model. Achieving an adequate con guration can mean an optimization problem itself. This research group has developed a parallel distributed model characterized by a hierarchy of processes com- munication organized in islands that cooperate in the search process. In this work we present a study of calibration for some input parameters that determines good results quality, with the aim of tuning them taking into account di erent con gurations applied globally to the model, or locally to each island.
Eje: XIV Workshop de Procesamiento Distribuido y Paralelo
Red de Universidades con Carreras de Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Distributed programming - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/42385
Ver los metadatos del registro completo
| id |
SEDICI_870a7fcb78ea7a1157c74420b77bf7fd |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/42385 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Parameter Tuning of a Parallel Hierarchical Island Based ModelTardivo, María LauraCaymes Scutari, PaolaMéndez Garabetti, MiguelBIanchini, GermánCiencias InformáticasDistributed programmingOne of the major drawbacks of using Evolutionary Algo- rithms is the determination of the input parameters, since they have an important in uence in the e ectiveness of the search. When using Par- allel Evolutionary Algorithms, such drawbacks are magni ed, since they incorporates new parameters needed to con gure the inherent charac- teristics of the parallel model. Achieving an adequate con guration can mean an optimization problem itself. This research group has developed a parallel distributed model characterized by a hierarchy of processes com- munication organized in islands that cooperate in the search process. In this work we present a study of calibration for some input parameters that determines good results quality, with the aim of tuning them taking into account di erent con gurations applied globally to the model, or locally to each island.Eje: XIV Workshop de Procesamiento Distribuido y ParaleloRed de Universidades con Carreras de Informática (RedUNCI)2014-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/42385enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-11-26T09:39:59Zoai:sedici.unlp.edu.ar:10915/42385Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-11-26 09:39:59.624SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Parameter Tuning of a Parallel Hierarchical Island Based Model |
| title |
Parameter Tuning of a Parallel Hierarchical Island Based Model |
| spellingShingle |
Parameter Tuning of a Parallel Hierarchical Island Based Model Tardivo, María Laura Ciencias Informáticas Distributed programming |
| title_short |
Parameter Tuning of a Parallel Hierarchical Island Based Model |
| title_full |
Parameter Tuning of a Parallel Hierarchical Island Based Model |
| title_fullStr |
Parameter Tuning of a Parallel Hierarchical Island Based Model |
| title_full_unstemmed |
Parameter Tuning of a Parallel Hierarchical Island Based Model |
| title_sort |
Parameter Tuning of a Parallel Hierarchical Island Based Model |
| dc.creator.none.fl_str_mv |
Tardivo, María Laura Caymes Scutari, Paola Méndez Garabetti, Miguel BIanchini, Germán |
| author |
Tardivo, María Laura |
| author_facet |
Tardivo, María Laura Caymes Scutari, Paola Méndez Garabetti, Miguel BIanchini, Germán |
| author_role |
author |
| author2 |
Caymes Scutari, Paola Méndez Garabetti, Miguel BIanchini, Germán |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas Distributed programming |
| topic |
Ciencias Informáticas Distributed programming |
| dc.description.none.fl_txt_mv |
One of the major drawbacks of using Evolutionary Algo- rithms is the determination of the input parameters, since they have an important in uence in the e ectiveness of the search. When using Par- allel Evolutionary Algorithms, such drawbacks are magni ed, since they incorporates new parameters needed to con gure the inherent charac- teristics of the parallel model. Achieving an adequate con guration can mean an optimization problem itself. This research group has developed a parallel distributed model characterized by a hierarchy of processes com- munication organized in islands that cooperate in the search process. In this work we present a study of calibration for some input parameters that determines good results quality, with the aim of tuning them taking into account di erent con gurations applied globally to the model, or locally to each island. Eje: XIV Workshop de Procesamiento Distribuido y Paralelo Red de Universidades con Carreras de Informática (RedUNCI) |
| description |
One of the major drawbacks of using Evolutionary Algo- rithms is the determination of the input parameters, since they have an important in uence in the e ectiveness of the search. When using Par- allel Evolutionary Algorithms, such drawbacks are magni ed, since they incorporates new parameters needed to con gure the inherent charac- teristics of the parallel model. Achieving an adequate con guration can mean an optimization problem itself. This research group has developed a parallel distributed model characterized by a hierarchy of processes com- munication organized in islands that cooperate in the search process. In this work we present a study of calibration for some input parameters that determines good results quality, with the aim of tuning them taking into account di erent con gurations applied globally to the model, or locally to each island. |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/42385 |
| url |
http://sedici.unlp.edu.ar/handle/10915/42385 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1849875802996342784 |
| score |
13.011256 |