Parameter Tuning of a Parallel Hierarchical Island Based Model

Autores
Tardivo, María Laura; Caymes Scutari, Paola; Méndez Garabetti, Miguel; BIanchini, Germán
Año de publicación
2014
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
One of the major drawbacks of using Evolutionary Algo- rithms is the determination of the input parameters, since they have an important in uence in the e ectiveness of the search. When using Par- allel Evolutionary Algorithms, such drawbacks are magni ed, since they incorporates new parameters needed to con gure the inherent charac- teristics of the parallel model. Achieving an adequate con guration can mean an optimization problem itself. This research group has developed a parallel distributed model characterized by a hierarchy of processes com- munication organized in islands that cooperate in the search process. In this work we present a study of calibration for some input parameters that determines good results quality, with the aim of tuning them taking into account di erent con gurations applied globally to the model, or locally to each island.
Eje: XIV Workshop de Procesamiento Distribuido y Paralelo
Red de Universidades con Carreras de Informática (RedUNCI)
Materia
Ciencias Informáticas
Distributed programming
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/42385

id SEDICI_870a7fcb78ea7a1157c74420b77bf7fd
oai_identifier_str oai:sedici.unlp.edu.ar:10915/42385
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Parameter Tuning of a Parallel Hierarchical Island Based ModelTardivo, María LauraCaymes Scutari, PaolaMéndez Garabetti, MiguelBIanchini, GermánCiencias InformáticasDistributed programmingOne of the major drawbacks of using Evolutionary Algo- rithms is the determination of the input parameters, since they have an important in uence in the e ectiveness of the search. When using Par- allel Evolutionary Algorithms, such drawbacks are magni ed, since they incorporates new parameters needed to con gure the inherent charac- teristics of the parallel model. Achieving an adequate con guration can mean an optimization problem itself. This research group has developed a parallel distributed model characterized by a hierarchy of processes com- munication organized in islands that cooperate in the search process. In this work we present a study of calibration for some input parameters that determines good results quality, with the aim of tuning them taking into account di erent con gurations applied globally to the model, or locally to each island.Eje: XIV Workshop de Procesamiento Distribuido y ParaleloRed de Universidades con Carreras de Informática (RedUNCI)2014-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/42385enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-11-26T09:39:59Zoai:sedici.unlp.edu.ar:10915/42385Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-11-26 09:39:59.624SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Parameter Tuning of a Parallel Hierarchical Island Based Model
title Parameter Tuning of a Parallel Hierarchical Island Based Model
spellingShingle Parameter Tuning of a Parallel Hierarchical Island Based Model
Tardivo, María Laura
Ciencias Informáticas
Distributed programming
title_short Parameter Tuning of a Parallel Hierarchical Island Based Model
title_full Parameter Tuning of a Parallel Hierarchical Island Based Model
title_fullStr Parameter Tuning of a Parallel Hierarchical Island Based Model
title_full_unstemmed Parameter Tuning of a Parallel Hierarchical Island Based Model
title_sort Parameter Tuning of a Parallel Hierarchical Island Based Model
dc.creator.none.fl_str_mv Tardivo, María Laura
Caymes Scutari, Paola
Méndez Garabetti, Miguel
BIanchini, Germán
author Tardivo, María Laura
author_facet Tardivo, María Laura
Caymes Scutari, Paola
Méndez Garabetti, Miguel
BIanchini, Germán
author_role author
author2 Caymes Scutari, Paola
Méndez Garabetti, Miguel
BIanchini, Germán
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Distributed programming
topic Ciencias Informáticas
Distributed programming
dc.description.none.fl_txt_mv One of the major drawbacks of using Evolutionary Algo- rithms is the determination of the input parameters, since they have an important in uence in the e ectiveness of the search. When using Par- allel Evolutionary Algorithms, such drawbacks are magni ed, since they incorporates new parameters needed to con gure the inherent charac- teristics of the parallel model. Achieving an adequate con guration can mean an optimization problem itself. This research group has developed a parallel distributed model characterized by a hierarchy of processes com- munication organized in islands that cooperate in the search process. In this work we present a study of calibration for some input parameters that determines good results quality, with the aim of tuning them taking into account di erent con gurations applied globally to the model, or locally to each island.
Eje: XIV Workshop de Procesamiento Distribuido y Paralelo
Red de Universidades con Carreras de Informática (RedUNCI)
description One of the major drawbacks of using Evolutionary Algo- rithms is the determination of the input parameters, since they have an important in uence in the e ectiveness of the search. When using Par- allel Evolutionary Algorithms, such drawbacks are magni ed, since they incorporates new parameters needed to con gure the inherent charac- teristics of the parallel model. Achieving an adequate con guration can mean an optimization problem itself. This research group has developed a parallel distributed model characterized by a hierarchy of processes com- munication organized in islands that cooperate in the search process. In this work we present a study of calibration for some input parameters that determines good results quality, with the aim of tuning them taking into account di erent con gurations applied globally to the model, or locally to each island.
publishDate 2014
dc.date.none.fl_str_mv 2014-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/42385
url http://sedici.unlp.edu.ar/handle/10915/42385
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1849875802996342784
score 13.011256