Effects of AGN feedback on ΛCDM galaxies

Autores
Lagos, Claudia del Pilar; Cora, Sofía Alejandra; Padilla, Nelson D.
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the effects of active galactic nuclei (AGN) feedback on the formation and evolution of galaxies by using a combination of a cosmological N-body simulation of the concordance Lambda cold dark matter (ΛCDM) paradigm and a semi-analytic model of galaxy formation. This model is an improved version of the one described by Cora (2006), which now considers the growth of black holes (BHs) as driven by (i) gas accretion during merger-driven starbursts and mergers with other BHs, (ii) accretion during starbursts triggered by disc instabilities and (iii) accretion of gas cooled from quasi-hydrostatic hot gas haloes. It is assumed that feedback from AGN operates in the last case. The model has been calibrated in order to reproduce observational correlations between BH mass and mass, velocity dispersion and absolute magnitudes of the galaxy bulge. AGN feedback has a strong impact on reducing or even suppressing gas cooling, an effect that becomes important at lower redshifts. This phenomenon helps to reproduce the observed galaxy luminosity function (LF) in the optical and near-infrared bands at z = 0, and the cosmic star formation rate and stellar mass functions over a wide redshift range (0 ≲ z ≲ 5). It also allows us to have a population of massive galaxies already in place at z ≳ 1, which are mostly early-type and have older and redder stellar populations than lower mass galaxies, reproducing the observed bimodality in the galaxy colour distribution, and the morphological fractions. The evolution of the optical QSO LF is also reproduced, provided that the presence of a significant fraction of obscured QSOs is assumed. We explore the effects of AGN feedback during starbursts finding that, in order to obtain a good agreement with observations, these need to be strong enough to expel the reheated gas away from the galaxy halo. We also test new, recent prescriptions for dynamical friction time-scales, and find that they produce an earlier formation of elliptical galaxies, and a larger amount of disc instabilities, which compensate the change in the merger frequency such that the properties of z = 0 galaxies remain almost unaffected.
Facultad de Ciencias Astronómicas y Geofísicas
Instituto de Astrofísica de La Plata
Materia
Ciencias Astronómicas
Galaxies: evolution
Galaxies: formation
Galaxies: statistics
Quasars: general
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/84161

id SEDICI_86c673232e42d26cebe4e4a27081230f
oai_identifier_str oai:sedici.unlp.edu.ar:10915/84161
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Effects of AGN feedback on ΛCDM galaxiesLagos, Claudia del PilarCora, Sofía AlejandraPadilla, Nelson D.Ciencias AstronómicasGalaxies: evolutionGalaxies: formationGalaxies: statisticsQuasars: generalWe study the effects of active galactic nuclei (AGN) feedback on the formation and evolution of galaxies by using a combination of a cosmological N-body simulation of the concordance Lambda cold dark matter (ΛCDM) paradigm and a semi-analytic model of galaxy formation. This model is an improved version of the one described by Cora (2006), which now considers the growth of black holes (BHs) as driven by (i) gas accretion during merger-driven starbursts and mergers with other BHs, (ii) accretion during starbursts triggered by disc instabilities and (iii) accretion of gas cooled from quasi-hydrostatic hot gas haloes. It is assumed that feedback from AGN operates in the last case. The model has been calibrated in order to reproduce observational correlations between BH mass and mass, velocity dispersion and absolute magnitudes of the galaxy bulge. AGN feedback has a strong impact on reducing or even suppressing gas cooling, an effect that becomes important at lower redshifts. This phenomenon helps to reproduce the observed galaxy luminosity function (LF) in the optical and near-infrared bands at z = 0, and the cosmic star formation rate and stellar mass functions over a wide redshift range (0 ≲ z ≲ 5). It also allows us to have a population of massive galaxies already in place at z ≳ 1, which are mostly early-type and have older and redder stellar populations than lower mass galaxies, reproducing the observed bimodality in the galaxy colour distribution, and the morphological fractions. The evolution of the optical QSO LF is also reproduced, provided that the presence of a significant fraction of obscured QSOs is assumed. We explore the effects of AGN feedback during starbursts finding that, in order to obtain a good agreement with observations, these need to be strong enough to expel the reheated gas away from the galaxy halo. We also test new, recent prescriptions for dynamical friction time-scales, and find that they produce an earlier formation of elliptical galaxies, and a larger amount of disc instabilities, which compensate the change in the merger frequency such that the properties of z = 0 galaxies remain almost unaffected.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plata2008info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf587-602http://sedici.unlp.edu.ar/handle/10915/84161enginfo:eu-repo/semantics/altIdentifier/issn/0035-8711info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-2966.2008.13456.xinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:48:31Zoai:sedici.unlp.edu.ar:10915/84161Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:48:31.485SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Effects of AGN feedback on ΛCDM galaxies
title Effects of AGN feedback on ΛCDM galaxies
spellingShingle Effects of AGN feedback on ΛCDM galaxies
Lagos, Claudia del Pilar
Ciencias Astronómicas
Galaxies: evolution
Galaxies: formation
Galaxies: statistics
Quasars: general
title_short Effects of AGN feedback on ΛCDM galaxies
title_full Effects of AGN feedback on ΛCDM galaxies
title_fullStr Effects of AGN feedback on ΛCDM galaxies
title_full_unstemmed Effects of AGN feedback on ΛCDM galaxies
title_sort Effects of AGN feedback on ΛCDM galaxies
dc.creator.none.fl_str_mv Lagos, Claudia del Pilar
Cora, Sofía Alejandra
Padilla, Nelson D.
author Lagos, Claudia del Pilar
author_facet Lagos, Claudia del Pilar
Cora, Sofía Alejandra
Padilla, Nelson D.
author_role author
author2 Cora, Sofía Alejandra
Padilla, Nelson D.
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Astronómicas
Galaxies: evolution
Galaxies: formation
Galaxies: statistics
Quasars: general
topic Ciencias Astronómicas
Galaxies: evolution
Galaxies: formation
Galaxies: statistics
Quasars: general
dc.description.none.fl_txt_mv We study the effects of active galactic nuclei (AGN) feedback on the formation and evolution of galaxies by using a combination of a cosmological N-body simulation of the concordance Lambda cold dark matter (ΛCDM) paradigm and a semi-analytic model of galaxy formation. This model is an improved version of the one described by Cora (2006), which now considers the growth of black holes (BHs) as driven by (i) gas accretion during merger-driven starbursts and mergers with other BHs, (ii) accretion during starbursts triggered by disc instabilities and (iii) accretion of gas cooled from quasi-hydrostatic hot gas haloes. It is assumed that feedback from AGN operates in the last case. The model has been calibrated in order to reproduce observational correlations between BH mass and mass, velocity dispersion and absolute magnitudes of the galaxy bulge. AGN feedback has a strong impact on reducing or even suppressing gas cooling, an effect that becomes important at lower redshifts. This phenomenon helps to reproduce the observed galaxy luminosity function (LF) in the optical and near-infrared bands at z = 0, and the cosmic star formation rate and stellar mass functions over a wide redshift range (0 ≲ z ≲ 5). It also allows us to have a population of massive galaxies already in place at z ≳ 1, which are mostly early-type and have older and redder stellar populations than lower mass galaxies, reproducing the observed bimodality in the galaxy colour distribution, and the morphological fractions. The evolution of the optical QSO LF is also reproduced, provided that the presence of a significant fraction of obscured QSOs is assumed. We explore the effects of AGN feedback during starbursts finding that, in order to obtain a good agreement with observations, these need to be strong enough to expel the reheated gas away from the galaxy halo. We also test new, recent prescriptions for dynamical friction time-scales, and find that they produce an earlier formation of elliptical galaxies, and a larger amount of disc instabilities, which compensate the change in the merger frequency such that the properties of z = 0 galaxies remain almost unaffected.
Facultad de Ciencias Astronómicas y Geofísicas
Instituto de Astrofísica de La Plata
description We study the effects of active galactic nuclei (AGN) feedback on the formation and evolution of galaxies by using a combination of a cosmological N-body simulation of the concordance Lambda cold dark matter (ΛCDM) paradigm and a semi-analytic model of galaxy formation. This model is an improved version of the one described by Cora (2006), which now considers the growth of black holes (BHs) as driven by (i) gas accretion during merger-driven starbursts and mergers with other BHs, (ii) accretion during starbursts triggered by disc instabilities and (iii) accretion of gas cooled from quasi-hydrostatic hot gas haloes. It is assumed that feedback from AGN operates in the last case. The model has been calibrated in order to reproduce observational correlations between BH mass and mass, velocity dispersion and absolute magnitudes of the galaxy bulge. AGN feedback has a strong impact on reducing or even suppressing gas cooling, an effect that becomes important at lower redshifts. This phenomenon helps to reproduce the observed galaxy luminosity function (LF) in the optical and near-infrared bands at z = 0, and the cosmic star formation rate and stellar mass functions over a wide redshift range (0 ≲ z ≲ 5). It also allows us to have a population of massive galaxies already in place at z ≳ 1, which are mostly early-type and have older and redder stellar populations than lower mass galaxies, reproducing the observed bimodality in the galaxy colour distribution, and the morphological fractions. The evolution of the optical QSO LF is also reproduced, provided that the presence of a significant fraction of obscured QSOs is assumed. We explore the effects of AGN feedback during starbursts finding that, in order to obtain a good agreement with observations, these need to be strong enough to expel the reheated gas away from the galaxy halo. We also test new, recent prescriptions for dynamical friction time-scales, and find that they produce an earlier formation of elliptical galaxies, and a larger amount of disc instabilities, which compensate the change in the merger frequency such that the properties of z = 0 galaxies remain almost unaffected.
publishDate 2008
dc.date.none.fl_str_mv 2008
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/84161
url http://sedici.unlp.edu.ar/handle/10915/84161
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0035-8711
info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-2966.2008.13456.x
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
587-602
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260360767209472
score 13.13397