Semi-supervised learning of types of temporal meanings in the Spanish lexicon
- Autores
- Grill, Pablo; Claassen, Mathias; Rosá, Aiala; Correa, Hernán
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- This paper presents a series of semi-supervised learning algorithms which were designed to classify words or expressions with temporal meanings. The algorithms use a set of pre-tagged temporal expressions and a set of semantic classes which were defined within a research project on the lexical coding of temporal meaning in Spanish. The algorithms in this article are mostly based on word embeddings, but they also make use of other methods. The results obtained strongly depend on the temporal classes considered, but, for some classes, results have reached 90% precision or above.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
temporal networks
word embeddings
semisupervised learning
Natural Language Processing
Semantics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/65938
Ver los metadatos del registro completo
id |
SEDICI_84f0748e1ab8e19193b77698e9ade791 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/65938 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Semi-supervised learning of types of temporal meanings in the Spanish lexiconGrill, PabloClaassen, MathiasRosá, AialaCorrea, HernánCiencias Informáticastemporal networksword embeddingssemisupervised learningNatural Language ProcessingSemanticsThis paper presents a series of semi-supervised learning algorithms which were designed to classify words or expressions with temporal meanings. The algorithms use a set of pre-tagged temporal expressions and a set of semantic classes which were defined within a research project on the lexical coding of temporal meaning in Spanish. The algorithms in this article are mostly based on word embeddings, but they also make use of other methods. The results obtained strongly depend on the temporal classes considered, but, for some classes, results have reached 90% precision or above.Sociedad Argentina de Informática e Investigación Operativa2017-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf17-24http://sedici.unlp.edu.ar/handle/10915/65938enginfo:eu-repo/semantics/altIdentifier/url/http://www.clei2017-46jaiio.sadio.org.ar/sites/default/files/Mem/ASAI/asai-03.pdfinfo:eu-repo/semantics/altIdentifier/issn/2451-7585info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/4.0/Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:09:45Zoai:sedici.unlp.edu.ar:10915/65938Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:09:45.361SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Semi-supervised learning of types of temporal meanings in the Spanish lexicon |
title |
Semi-supervised learning of types of temporal meanings in the Spanish lexicon |
spellingShingle |
Semi-supervised learning of types of temporal meanings in the Spanish lexicon Grill, Pablo Ciencias Informáticas temporal networks word embeddings semisupervised learning Natural Language Processing Semantics |
title_short |
Semi-supervised learning of types of temporal meanings in the Spanish lexicon |
title_full |
Semi-supervised learning of types of temporal meanings in the Spanish lexicon |
title_fullStr |
Semi-supervised learning of types of temporal meanings in the Spanish lexicon |
title_full_unstemmed |
Semi-supervised learning of types of temporal meanings in the Spanish lexicon |
title_sort |
Semi-supervised learning of types of temporal meanings in the Spanish lexicon |
dc.creator.none.fl_str_mv |
Grill, Pablo Claassen, Mathias Rosá, Aiala Correa, Hernán |
author |
Grill, Pablo |
author_facet |
Grill, Pablo Claassen, Mathias Rosá, Aiala Correa, Hernán |
author_role |
author |
author2 |
Claassen, Mathias Rosá, Aiala Correa, Hernán |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas temporal networks word embeddings semisupervised learning Natural Language Processing Semantics |
topic |
Ciencias Informáticas temporal networks word embeddings semisupervised learning Natural Language Processing Semantics |
dc.description.none.fl_txt_mv |
This paper presents a series of semi-supervised learning algorithms which were designed to classify words or expressions with temporal meanings. The algorithms use a set of pre-tagged temporal expressions and a set of semantic classes which were defined within a research project on the lexical coding of temporal meaning in Spanish. The algorithms in this article are mostly based on word embeddings, but they also make use of other methods. The results obtained strongly depend on the temporal classes considered, but, for some classes, results have reached 90% precision or above. Sociedad Argentina de Informática e Investigación Operativa |
description |
This paper presents a series of semi-supervised learning algorithms which were designed to classify words or expressions with temporal meanings. The algorithms use a set of pre-tagged temporal expressions and a set of semantic classes which were defined within a research project on the lexical coding of temporal meaning in Spanish. The algorithms in this article are mostly based on word embeddings, but they also make use of other methods. The results obtained strongly depend on the temporal classes considered, but, for some classes, results have reached 90% precision or above. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/65938 |
url |
http://sedici.unlp.edu.ar/handle/10915/65938 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.clei2017-46jaiio.sadio.org.ar/sites/default/files/Mem/ASAI/asai-03.pdf info:eu-repo/semantics/altIdentifier/issn/2451-7585 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-sa/4.0/ Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-sa/4.0/ Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 17-24 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615965461970944 |
score |
13.069144 |