Methane Flow through Organic-Rich Nanopores : The Key Role of Atomic-Scale Roughness

Autores
Castez, Marcos Federico; Winograd, E. A.; Sánchez, V. M.
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We perform a detailed study of methane flow through nanoporous kerogen. Using molecular dynamics and modeling the kerogen pore with an amorphous carbon nanotube (a-CNT), we show that the reported flow enhancement over Hagen−Poisseuile flow is mainly due to the smoothness, on an atomic scale, of the CNTs. It acts in two ways: first, it helps the mobility of the adsorbed layer; second, and even more important for the flow enhancement, it prevents the dependency on the inverse of the channel length (L) from developing. While the former can incrementally contribute to the flow, the latter effect can explain the orders of magnitude found in comparison to macroscopic results.
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
Materia
Ciencias Exactas
Carbon nanotubes
Hydrocarbons
Layers
Nanoparticles
Surface roughness
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/103479

id SEDICI_81de199101d8d382815e52f303e37d02
oai_identifier_str oai:sedici.unlp.edu.ar:10915/103479
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Methane Flow through Organic-Rich Nanopores : The Key Role of Atomic-Scale RoughnessCastez, Marcos FedericoWinograd, E. A.Sánchez, V. M.Ciencias ExactasCarbon nanotubesHydrocarbonsLayersNanoparticlesSurface roughnessWe perform a detailed study of methane flow through nanoporous kerogen. Using molecular dynamics and modeling the kerogen pore with an amorphous carbon nanotube (a-CNT), we show that the reported flow enhancement over Hagen−Poisseuile flow is mainly due to the smoothness, on an atomic scale, of the CNTs. It acts in two ways: first, it helps the mobility of the adsorbed layer; second, and even more important for the flow enhancement, it prevents the dependency on the inverse of the channel length (L) from developing. While the former can incrementally contribute to the flow, the latter effect can explain the orders of magnitude found in comparison to macroscopic results.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas2017-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf28527-28536http://sedici.unlp.edu.ar/handle/10915/103479enginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jpcc.7b09811info:eu-repo/semantics/altIdentifier/issn/1932-7455info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.7b09811info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:03:21Zoai:sedici.unlp.edu.ar:10915/103479Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:03:21.543SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Methane Flow through Organic-Rich Nanopores : The Key Role of Atomic-Scale Roughness
title Methane Flow through Organic-Rich Nanopores : The Key Role of Atomic-Scale Roughness
spellingShingle Methane Flow through Organic-Rich Nanopores : The Key Role of Atomic-Scale Roughness
Castez, Marcos Federico
Ciencias Exactas
Carbon nanotubes
Hydrocarbons
Layers
Nanoparticles
Surface roughness
title_short Methane Flow through Organic-Rich Nanopores : The Key Role of Atomic-Scale Roughness
title_full Methane Flow through Organic-Rich Nanopores : The Key Role of Atomic-Scale Roughness
title_fullStr Methane Flow through Organic-Rich Nanopores : The Key Role of Atomic-Scale Roughness
title_full_unstemmed Methane Flow through Organic-Rich Nanopores : The Key Role of Atomic-Scale Roughness
title_sort Methane Flow through Organic-Rich Nanopores : The Key Role of Atomic-Scale Roughness
dc.creator.none.fl_str_mv Castez, Marcos Federico
Winograd, E. A.
Sánchez, V. M.
author Castez, Marcos Federico
author_facet Castez, Marcos Federico
Winograd, E. A.
Sánchez, V. M.
author_role author
author2 Winograd, E. A.
Sánchez, V. M.
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Exactas
Carbon nanotubes
Hydrocarbons
Layers
Nanoparticles
Surface roughness
topic Ciencias Exactas
Carbon nanotubes
Hydrocarbons
Layers
Nanoparticles
Surface roughness
dc.description.none.fl_txt_mv We perform a detailed study of methane flow through nanoporous kerogen. Using molecular dynamics and modeling the kerogen pore with an amorphous carbon nanotube (a-CNT), we show that the reported flow enhancement over Hagen−Poisseuile flow is mainly due to the smoothness, on an atomic scale, of the CNTs. It acts in two ways: first, it helps the mobility of the adsorbed layer; second, and even more important for the flow enhancement, it prevents the dependency on the inverse of the channel length (L) from developing. While the former can incrementally contribute to the flow, the latter effect can explain the orders of magnitude found in comparison to macroscopic results.
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
description We perform a detailed study of methane flow through nanoporous kerogen. Using molecular dynamics and modeling the kerogen pore with an amorphous carbon nanotube (a-CNT), we show that the reported flow enhancement over Hagen−Poisseuile flow is mainly due to the smoothness, on an atomic scale, of the CNTs. It acts in two ways: first, it helps the mobility of the adsorbed layer; second, and even more important for the flow enhancement, it prevents the dependency on the inverse of the channel length (L) from developing. While the former can incrementally contribute to the flow, the latter effect can explain the orders of magnitude found in comparison to macroscopic results.
publishDate 2017
dc.date.none.fl_str_mv 2017-12-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/103479
url http://sedici.unlp.edu.ar/handle/10915/103479
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jpcc.7b09811
info:eu-repo/semantics/altIdentifier/issn/1932-7455
info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.7b09811
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
28527-28536
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846783298968223744
score 12.982451