No extensividad en Física: ecuaciones cuánticas no lineales y mecánica estadística de la gravitación

Autores
Zamora, Darío Javier
Año de publicación
2020
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión aceptada
Colaborador/a o director/a de tesis
Rocca, Mario Carlos
Plastino, Ángel Luis
Descripción
La finalidad de esta tesis es contribuir al esfuerzo que han iniciado otros investigadores con el objetivo de construir y reforzar el edificio científico del Paradigma de Wheeler. Este paradigma tiene como propósito reescribir algunas áreas de las ciencias desde el punto de vista de la teoría matemática de la información. Para cumplir este objetivo, trabajo en un área interdisciplinaria entre teoría de la información, mecánica estadística, física semi-clásica, sistemas no lineales, mecánica cuántica y astrofísica. En particular, me enfoco en el estudio de la entropía de Tsallis aplicada a ecuaciones no lineales cuánticas y algunos aspectos de gravitación como fuerzas entrópicas y mecánica estadística de sistemas autogravitantes. Respecto al primer tema, analizo exhaustivamente un tratamiento perturbativo de primer orden de las ecuaciones diferenciales parciales de q-Schroedinger y q-Klein-Gordon. Muestro que, para pequeños valores de q-1, la aproximación es bastante buena. Ésto es de relevancia en física porque esos valores de q son los relevantes en el rango de energías de interés para física de altas e intermedias energías. También exploro desarrollos de las ecuaciones de q-Schroedinger de variables separadas y de la función q-Gaussiana. A su vez, desarrollo un conjunto de estados q-Gamow para los cuales la distribución de q-Breit-Wigner asociada podría ser encontrada fácilmente a energías intermedias, para las cuales existen aceleradores de partículas. En tales experimentos nunca se detecta una Gaussiana pura, sino una q-Gaussiana. Sobre el segundo tema, estudio la fenomenología de curvas en el espacio de fases en el marco de la teoría de Tsallis. Desarrollo una q-entropía de camino para la cual uno puede calcular un mecanismo de fuerza entrópica capaz de imitar algunos aspectos de cromodinámica cuántica en una manera clásica. Trabajo tanto con la fuerza entrópica unidimensional como con su generalización a n dimensiones. Esto une diferentes pero importantes conceptos en física: fuerza entrópica, entropía a lo largo de una curva, estadística de Tsallis y gravedad emergente. Es interesante que, a pesar que la dimensionalidad es muy importante en gravitación, con lo que respecta a curvas en el espacio de fases, cualitativamente sus propiedades son intrínsecas a la curva, no importa en que espacio está sumergida. Presento un tratamiento novedoso de las divergencias de la función de partición de la gravedad Newtoniana via regularización dimensional en ambos escenarios: Tsallis (ya que los sistemas autogravitantes son altamente no extensivos) y el usual de Boltzmann-Gibbs. Muestro que existe una cota en la temperatura y que el calor específico negativo emerge naturalmente en ambos escenarios. Para ilustrar el alcance de esta técnica desarrollo un modelo de una galaxia de disco con un agujero negro supermasivo en el centro. Se obtienen resultados interesantes y coherentes: i-una cota máxima para la temperatura, ii-el calor específico es negativo, iii-el límite del calor específico cuando la masa del agujero negro tiende a cero es la de un gas autogravitante ideal, iv-la tercera ley de la termodinámica es violada, y v-la catástrofe gravotérmica es evitada si el número de constituyentes del halo que rodea a la galaxia es menor o igual que el número de estrellas en ésta. Finalmente, propongo una nueva entropía de Tsallis libre de polos, obtenida a partir de desarrollos alrededor de q=1. Además, muestro que nuestro tratamiento en compatible con datos existentes de la capa de ozono.
Doctor en Ciencias Exactas, área Física
Facultad de Ciencias Exactas
Facultad de Ciencias Exactas
Materia
Física
No extensividad
Mecánica estadística
Gravitación
Sistemas cuánticos
Teoría de la Información
Sistemas no lineales
Sistemas complejos
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/101619

id SEDICI_815adf7e1fb67a7f5170e5f02cb542bc
oai_identifier_str oai:sedici.unlp.edu.ar:10915/101619
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling No extensividad en Física: ecuaciones cuánticas no lineales y mecánica estadística de la gravitaciónZamora, Darío JavierFísicaNo extensividadMecánica estadísticaGravitaciónSistemas cuánticosTeoría de la InformaciónSistemas no linealesSistemas complejosLa finalidad de esta tesis es contribuir al esfuerzo que han iniciado otros investigadores con el objetivo de construir y reforzar el edificio científico del Paradigma de Wheeler. Este paradigma tiene como propósito reescribir algunas áreas de las ciencias desde el punto de vista de la teoría matemática de la información. Para cumplir este objetivo, trabajo en un área interdisciplinaria entre teoría de la información, mecánica estadística, física semi-clásica, sistemas no lineales, mecánica cuántica y astrofísica. En particular, me enfoco en el estudio de la entropía de Tsallis aplicada a ecuaciones no lineales cuánticas y algunos aspectos de gravitación como fuerzas entrópicas y mecánica estadística de sistemas autogravitantes. Respecto al primer tema, analizo exhaustivamente un tratamiento perturbativo de primer orden de las ecuaciones diferenciales parciales de q-Schroedinger y q-Klein-Gordon. Muestro que, para pequeños valores de q-1, la aproximación es bastante buena. Ésto es de relevancia en física porque esos valores de q son los relevantes en el rango de energías de interés para física de altas e intermedias energías. También exploro desarrollos de las ecuaciones de q-Schroedinger de variables separadas y de la función q-Gaussiana. A su vez, desarrollo un conjunto de estados q-Gamow para los cuales la distribución de q-Breit-Wigner asociada podría ser encontrada fácilmente a energías intermedias, para las cuales existen aceleradores de partículas. En tales experimentos nunca se detecta una Gaussiana pura, sino una q-Gaussiana. Sobre el segundo tema, estudio la fenomenología de curvas en el espacio de fases en el marco de la teoría de Tsallis. Desarrollo una q-entropía de camino para la cual uno puede calcular un mecanismo de fuerza entrópica capaz de imitar algunos aspectos de cromodinámica cuántica en una manera clásica. Trabajo tanto con la fuerza entrópica unidimensional como con su generalización a n dimensiones. Esto une diferentes pero importantes conceptos en física: fuerza entrópica, entropía a lo largo de una curva, estadística de Tsallis y gravedad emergente. Es interesante que, a pesar que la dimensionalidad es muy importante en gravitación, con lo que respecta a curvas en el espacio de fases, cualitativamente sus propiedades son intrínsecas a la curva, no importa en que espacio está sumergida. Presento un tratamiento novedoso de las divergencias de la función de partición de la gravedad Newtoniana via regularización dimensional en ambos escenarios: Tsallis (ya que los sistemas autogravitantes son altamente no extensivos) y el usual de Boltzmann-Gibbs. Muestro que existe una cota en la temperatura y que el calor específico negativo emerge naturalmente en ambos escenarios. Para ilustrar el alcance de esta técnica desarrollo un modelo de una galaxia de disco con un agujero negro supermasivo en el centro. Se obtienen resultados interesantes y coherentes: i-una cota máxima para la temperatura, ii-el calor específico es negativo, iii-el límite del calor específico cuando la masa del agujero negro tiende a cero es la de un gas autogravitante ideal, iv-la tercera ley de la termodinámica es violada, y v-la catástrofe gravotérmica es evitada si el número de constituyentes del halo que rodea a la galaxia es menor o igual que el número de estrellas en ésta. Finalmente, propongo una nueva entropía de Tsallis libre de polos, obtenida a partir de desarrollos alrededor de q=1. Además, muestro que nuestro tratamiento en compatible con datos existentes de la capa de ozono.Doctor en Ciencias Exactas, área FísicaFacultad de Ciencias ExactasFacultad de Ciencias ExactasRocca, Mario CarlosPlastino, Ángel Luis2020-08-04info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionTesis de doctoradohttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/101619https://doi.org/10.35537/10915/101619spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-12-23T11:24:16Zoai:sedici.unlp.edu.ar:10915/101619Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-12-23 11:24:17.031SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv No extensividad en Física: ecuaciones cuánticas no lineales y mecánica estadística de la gravitación
title No extensividad en Física: ecuaciones cuánticas no lineales y mecánica estadística de la gravitación
spellingShingle No extensividad en Física: ecuaciones cuánticas no lineales y mecánica estadística de la gravitación
Zamora, Darío Javier
Física
No extensividad
Mecánica estadística
Gravitación
Sistemas cuánticos
Teoría de la Información
Sistemas no lineales
Sistemas complejos
title_short No extensividad en Física: ecuaciones cuánticas no lineales y mecánica estadística de la gravitación
title_full No extensividad en Física: ecuaciones cuánticas no lineales y mecánica estadística de la gravitación
title_fullStr No extensividad en Física: ecuaciones cuánticas no lineales y mecánica estadística de la gravitación
title_full_unstemmed No extensividad en Física: ecuaciones cuánticas no lineales y mecánica estadística de la gravitación
title_sort No extensividad en Física: ecuaciones cuánticas no lineales y mecánica estadística de la gravitación
dc.creator.none.fl_str_mv Zamora, Darío Javier
author Zamora, Darío Javier
author_facet Zamora, Darío Javier
author_role author
dc.contributor.none.fl_str_mv Rocca, Mario Carlos
Plastino, Ángel Luis
dc.subject.none.fl_str_mv Física
No extensividad
Mecánica estadística
Gravitación
Sistemas cuánticos
Teoría de la Información
Sistemas no lineales
Sistemas complejos
topic Física
No extensividad
Mecánica estadística
Gravitación
Sistemas cuánticos
Teoría de la Información
Sistemas no lineales
Sistemas complejos
dc.description.none.fl_txt_mv La finalidad de esta tesis es contribuir al esfuerzo que han iniciado otros investigadores con el objetivo de construir y reforzar el edificio científico del Paradigma de Wheeler. Este paradigma tiene como propósito reescribir algunas áreas de las ciencias desde el punto de vista de la teoría matemática de la información. Para cumplir este objetivo, trabajo en un área interdisciplinaria entre teoría de la información, mecánica estadística, física semi-clásica, sistemas no lineales, mecánica cuántica y astrofísica. En particular, me enfoco en el estudio de la entropía de Tsallis aplicada a ecuaciones no lineales cuánticas y algunos aspectos de gravitación como fuerzas entrópicas y mecánica estadística de sistemas autogravitantes. Respecto al primer tema, analizo exhaustivamente un tratamiento perturbativo de primer orden de las ecuaciones diferenciales parciales de q-Schroedinger y q-Klein-Gordon. Muestro que, para pequeños valores de q-1, la aproximación es bastante buena. Ésto es de relevancia en física porque esos valores de q son los relevantes en el rango de energías de interés para física de altas e intermedias energías. También exploro desarrollos de las ecuaciones de q-Schroedinger de variables separadas y de la función q-Gaussiana. A su vez, desarrollo un conjunto de estados q-Gamow para los cuales la distribución de q-Breit-Wigner asociada podría ser encontrada fácilmente a energías intermedias, para las cuales existen aceleradores de partículas. En tales experimentos nunca se detecta una Gaussiana pura, sino una q-Gaussiana. Sobre el segundo tema, estudio la fenomenología de curvas en el espacio de fases en el marco de la teoría de Tsallis. Desarrollo una q-entropía de camino para la cual uno puede calcular un mecanismo de fuerza entrópica capaz de imitar algunos aspectos de cromodinámica cuántica en una manera clásica. Trabajo tanto con la fuerza entrópica unidimensional como con su generalización a n dimensiones. Esto une diferentes pero importantes conceptos en física: fuerza entrópica, entropía a lo largo de una curva, estadística de Tsallis y gravedad emergente. Es interesante que, a pesar que la dimensionalidad es muy importante en gravitación, con lo que respecta a curvas en el espacio de fases, cualitativamente sus propiedades son intrínsecas a la curva, no importa en que espacio está sumergida. Presento un tratamiento novedoso de las divergencias de la función de partición de la gravedad Newtoniana via regularización dimensional en ambos escenarios: Tsallis (ya que los sistemas autogravitantes son altamente no extensivos) y el usual de Boltzmann-Gibbs. Muestro que existe una cota en la temperatura y que el calor específico negativo emerge naturalmente en ambos escenarios. Para ilustrar el alcance de esta técnica desarrollo un modelo de una galaxia de disco con un agujero negro supermasivo en el centro. Se obtienen resultados interesantes y coherentes: i-una cota máxima para la temperatura, ii-el calor específico es negativo, iii-el límite del calor específico cuando la masa del agujero negro tiende a cero es la de un gas autogravitante ideal, iv-la tercera ley de la termodinámica es violada, y v-la catástrofe gravotérmica es evitada si el número de constituyentes del halo que rodea a la galaxia es menor o igual que el número de estrellas en ésta. Finalmente, propongo una nueva entropía de Tsallis libre de polos, obtenida a partir de desarrollos alrededor de q=1. Además, muestro que nuestro tratamiento en compatible con datos existentes de la capa de ozono.
Doctor en Ciencias Exactas, área Física
Facultad de Ciencias Exactas
Facultad de Ciencias Exactas
description La finalidad de esta tesis es contribuir al esfuerzo que han iniciado otros investigadores con el objetivo de construir y reforzar el edificio científico del Paradigma de Wheeler. Este paradigma tiene como propósito reescribir algunas áreas de las ciencias desde el punto de vista de la teoría matemática de la información. Para cumplir este objetivo, trabajo en un área interdisciplinaria entre teoría de la información, mecánica estadística, física semi-clásica, sistemas no lineales, mecánica cuántica y astrofísica. En particular, me enfoco en el estudio de la entropía de Tsallis aplicada a ecuaciones no lineales cuánticas y algunos aspectos de gravitación como fuerzas entrópicas y mecánica estadística de sistemas autogravitantes. Respecto al primer tema, analizo exhaustivamente un tratamiento perturbativo de primer orden de las ecuaciones diferenciales parciales de q-Schroedinger y q-Klein-Gordon. Muestro que, para pequeños valores de q-1, la aproximación es bastante buena. Ésto es de relevancia en física porque esos valores de q son los relevantes en el rango de energías de interés para física de altas e intermedias energías. También exploro desarrollos de las ecuaciones de q-Schroedinger de variables separadas y de la función q-Gaussiana. A su vez, desarrollo un conjunto de estados q-Gamow para los cuales la distribución de q-Breit-Wigner asociada podría ser encontrada fácilmente a energías intermedias, para las cuales existen aceleradores de partículas. En tales experimentos nunca se detecta una Gaussiana pura, sino una q-Gaussiana. Sobre el segundo tema, estudio la fenomenología de curvas en el espacio de fases en el marco de la teoría de Tsallis. Desarrollo una q-entropía de camino para la cual uno puede calcular un mecanismo de fuerza entrópica capaz de imitar algunos aspectos de cromodinámica cuántica en una manera clásica. Trabajo tanto con la fuerza entrópica unidimensional como con su generalización a n dimensiones. Esto une diferentes pero importantes conceptos en física: fuerza entrópica, entropía a lo largo de una curva, estadística de Tsallis y gravedad emergente. Es interesante que, a pesar que la dimensionalidad es muy importante en gravitación, con lo que respecta a curvas en el espacio de fases, cualitativamente sus propiedades son intrínsecas a la curva, no importa en que espacio está sumergida. Presento un tratamiento novedoso de las divergencias de la función de partición de la gravedad Newtoniana via regularización dimensional en ambos escenarios: Tsallis (ya que los sistemas autogravitantes son altamente no extensivos) y el usual de Boltzmann-Gibbs. Muestro que existe una cota en la temperatura y que el calor específico negativo emerge naturalmente en ambos escenarios. Para ilustrar el alcance de esta técnica desarrollo un modelo de una galaxia de disco con un agujero negro supermasivo en el centro. Se obtienen resultados interesantes y coherentes: i-una cota máxima para la temperatura, ii-el calor específico es negativo, iii-el límite del calor específico cuando la masa del agujero negro tiende a cero es la de un gas autogravitante ideal, iv-la tercera ley de la termodinámica es violada, y v-la catástrofe gravotérmica es evitada si el número de constituyentes del halo que rodea a la galaxia es menor o igual que el número de estrellas en ésta. Finalmente, propongo una nueva entropía de Tsallis libre de polos, obtenida a partir de desarrollos alrededor de q=1. Además, muestro que nuestro tratamiento en compatible con datos existentes de la capa de ozono.
publishDate 2020
dc.date.none.fl_str_mv 2020-08-04
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/acceptedVersion
Tesis de doctorado
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/101619
https://doi.org/10.35537/10915/101619
url http://sedici.unlp.edu.ar/handle/10915/101619
https://doi.org/10.35537/10915/101619
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1852334291775651840
score 12.952241