A hybrid effort estimation model for perfective maintenance: a real experience
- Autores
- Irrazábal, Emanuel; Osorio, Zurisadai Benjamin; Garzás, JAvier
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- This paper presents the results of a hybrid estimation model for perfective software maintenance applied in a real context. The resulting model integrates heuristics and parametric methods to improve the maintenance estimation. One of the main objectives of this model is the inclusion of functionalities that provide zero function points. These functionalities can be supported by the model through impact points. Likewise, the micro function points and weighted risks have been included to provide a more realistic estimate. Finally, the model was implemented in a SME where the estimates were very approximates to the real effort. As result, the model could be implemented in a small organization with a stable maintenance process and effort deviation was 11% after applying the model.
Presentado en el VIII Workshop Ingeniería de Software (WIS)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Hybrid systems
Software maintenance
Models
estimation model; perfective maintenance; effort; impact points; micro function points; methods - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/18724
Ver los metadatos del registro completo
id |
SEDICI_780df7b25b9b70a7f9c060fe487400e9 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/18724 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
A hybrid effort estimation model for perfective maintenance: a real experienceIrrazábal, EmanuelOsorio, Zurisadai BenjaminGarzás, JAvierCiencias InformáticasHybrid systemsSoftware maintenanceModelsestimation model; perfective maintenance; effort; impact points; micro function points; methodsThis paper presents the results of a hybrid estimation model for perfective software maintenance applied in a real context. The resulting model integrates heuristics and parametric methods to improve the maintenance estimation. One of the main objectives of this model is the inclusion of functionalities that provide zero function points. These functionalities can be supported by the model through impact points. Likewise, the micro function points and weighted risks have been included to provide a more realistic estimate. Finally, the model was implemented in a SME where the estimates were very approximates to the real effort. As result, the model could be implemented in a small organization with a stable maintenance process and effort deviation was 11% after applying the model.Presentado en el VIII Workshop Ingeniería de Software (WIS)Red de Universidades con Carreras en Informática (RedUNCI)2011-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf679-688http://sedici.unlp.edu.ar/handle/10915/18724enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:53:37Zoai:sedici.unlp.edu.ar:10915/18724Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:53:37.346SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
A hybrid effort estimation model for perfective maintenance: a real experience |
title |
A hybrid effort estimation model for perfective maintenance: a real experience |
spellingShingle |
A hybrid effort estimation model for perfective maintenance: a real experience Irrazábal, Emanuel Ciencias Informáticas Hybrid systems Software maintenance Models estimation model; perfective maintenance; effort; impact points; micro function points; methods |
title_short |
A hybrid effort estimation model for perfective maintenance: a real experience |
title_full |
A hybrid effort estimation model for perfective maintenance: a real experience |
title_fullStr |
A hybrid effort estimation model for perfective maintenance: a real experience |
title_full_unstemmed |
A hybrid effort estimation model for perfective maintenance: a real experience |
title_sort |
A hybrid effort estimation model for perfective maintenance: a real experience |
dc.creator.none.fl_str_mv |
Irrazábal, Emanuel Osorio, Zurisadai Benjamin Garzás, JAvier |
author |
Irrazábal, Emanuel |
author_facet |
Irrazábal, Emanuel Osorio, Zurisadai Benjamin Garzás, JAvier |
author_role |
author |
author2 |
Osorio, Zurisadai Benjamin Garzás, JAvier |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Hybrid systems Software maintenance Models estimation model; perfective maintenance; effort; impact points; micro function points; methods |
topic |
Ciencias Informáticas Hybrid systems Software maintenance Models estimation model; perfective maintenance; effort; impact points; micro function points; methods |
dc.description.none.fl_txt_mv |
This paper presents the results of a hybrid estimation model for perfective software maintenance applied in a real context. The resulting model integrates heuristics and parametric methods to improve the maintenance estimation. One of the main objectives of this model is the inclusion of functionalities that provide zero function points. These functionalities can be supported by the model through impact points. Likewise, the micro function points and weighted risks have been included to provide a more realistic estimate. Finally, the model was implemented in a SME where the estimates were very approximates to the real effort. As result, the model could be implemented in a small organization with a stable maintenance process and effort deviation was 11% after applying the model. Presentado en el VIII Workshop Ingeniería de Software (WIS) Red de Universidades con Carreras en Informática (RedUNCI) |
description |
This paper presents the results of a hybrid estimation model for perfective software maintenance applied in a real context. The resulting model integrates heuristics and parametric methods to improve the maintenance estimation. One of the main objectives of this model is the inclusion of functionalities that provide zero function points. These functionalities can be supported by the model through impact points. Likewise, the micro function points and weighted risks have been included to provide a more realistic estimate. Finally, the model was implemented in a SME where the estimates were very approximates to the real effort. As result, the model could be implemented in a small organization with a stable maintenance process and effort deviation was 11% after applying the model. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/18724 |
url |
http://sedici.unlp.edu.ar/handle/10915/18724 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 679-688 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615792112435200 |
score |
13.070432 |