Exploratory Analysis of SCADA Data from Wind Turbines Using the K-Means Clustering Algorithm for Predictive Maintenance Purposes
- Autores
- Cosa Rodríguez, Pablo; Martí Puig, Pere; Caiafa, César Federico; Serra Serra, Moises; Cusidó, Jordi; Solé Casals, Jordi
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Product maintenance costs throughout the product’s lifetime can account for between 30–60% of total operating costs, making it necessary to implement maintenance strategies. This problem not only affects the economy but is also related to the impact on the environment, since breakdowns are also responsible for the delivery of greenhouse gases. Industrial maintenance is a set of measures of a technical-organizational nature whose purpose is to sustain the functionality of theequipment and guarantee an optimal state of the machines over time, with the aim of saving costs, extending the useful life of the machines, saving energy, maximising production and availability, ensuring the quality of the product obtained, providing job security for technicians, preserving the environment, and reducing emissions as much as possible. Machine learning techniques can be used to detect or predict faults in wind turbines. However, labelled data suffers from many problems in this application because alarms are usually not clearly associated with a specific fault, some labelsare wrongly associated with a problem, and the imbalance between labels is evident. To avoid using labelled data, we investigate here the use of the clustering technique, more specifically K-means, and boxplot representations of the variables for a set of six different tests. Experimental results show that in some cases, the clustering and boxplot techniques allow us to determine outliers or identify erroneous behaviours of the wind turbines. These cases can then be investigated in detail by a specialist so that more efficient predictive maintenance can be carried out.
Fil: Cosa Rodríguez, Pablo. Open University of Catalonia. Faculty of Computer Science, Multimedia and Telecommunications.; España
Fil: Martí Puig, Pere. University of Vic-Central. Data and Signal Processing Group; España
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
Fil: Serra Serra, Moises. University of Vic-Central. Data and Signal Processing Group; España
Fil: Cusidó, Jordi. University of Vic-Central. Data and Signal Processing Group; España
Fil: Solé Casals, Jordi. University of Vic-Central. Data and Signal Processing Group; España - Materia
-
predictive maintenance
prognosis
machine learning
K-means - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/218002
Ver los metadatos del registro completo
id |
CONICETDig_e48a280fba660d12386205d687fc0afb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/218002 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Exploratory Analysis of SCADA Data from Wind Turbines Using the K-Means Clustering Algorithm for Predictive Maintenance PurposesCosa Rodríguez, PabloMartí Puig, PereCaiafa, César FedericoSerra Serra, MoisesCusidó, JordiSolé Casals, Jordipredictive maintenanceprognosismachine learningK-meanshttps://purl.org/becyt/ford/2.7https://purl.org/becyt/ford/2Product maintenance costs throughout the product’s lifetime can account for between 30–60% of total operating costs, making it necessary to implement maintenance strategies. This problem not only affects the economy but is also related to the impact on the environment, since breakdowns are also responsible for the delivery of greenhouse gases. Industrial maintenance is a set of measures of a technical-organizational nature whose purpose is to sustain the functionality of theequipment and guarantee an optimal state of the machines over time, with the aim of saving costs, extending the useful life of the machines, saving energy, maximising production and availability, ensuring the quality of the product obtained, providing job security for technicians, preserving the environment, and reducing emissions as much as possible. Machine learning techniques can be used to detect or predict faults in wind turbines. However, labelled data suffers from many problems in this application because alarms are usually not clearly associated with a specific fault, some labelsare wrongly associated with a problem, and the imbalance between labels is evident. To avoid using labelled data, we investigate here the use of the clustering technique, more specifically K-means, and boxplot representations of the variables for a set of six different tests. Experimental results show that in some cases, the clustering and boxplot techniques allow us to determine outliers or identify erroneous behaviours of the wind turbines. These cases can then be investigated in detail by a specialist so that more efficient predictive maintenance can be carried out.Fil: Cosa Rodríguez, Pablo. Open University of Catalonia. Faculty of Computer Science, Multimedia and Telecommunications.; EspañaFil: Martí Puig, Pere. University of Vic-Central. Data and Signal Processing Group; EspañaFil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Serra Serra, Moises. University of Vic-Central. Data and Signal Processing Group; EspañaFil: Cusidó, Jordi. University of Vic-Central. Data and Signal Processing Group; EspañaFil: Solé Casals, Jordi. University of Vic-Central. Data and Signal Processing Group; EspañaMDPI2023-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/218002Cosa Rodríguez, Pablo; Martí Puig, Pere; Caiafa, César Federico; Serra Serra, Moises; Cusidó, Jordi; et al.; Exploratory Analysis of SCADA Data from Wind Turbines Using the K-Means Clustering Algorithm for Predictive Maintenance Purposes; MDPI; Machines; 11; 2; 2-2023; 1-152075-1702CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2075-1702/11/2/270/htminfo:eu-repo/semantics/altIdentifier/doi/10.3390/machines11020270info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:18:21Zoai:ri.conicet.gov.ar:11336/218002instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:18:21.514CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Exploratory Analysis of SCADA Data from Wind Turbines Using the K-Means Clustering Algorithm for Predictive Maintenance Purposes |
title |
Exploratory Analysis of SCADA Data from Wind Turbines Using the K-Means Clustering Algorithm for Predictive Maintenance Purposes |
spellingShingle |
Exploratory Analysis of SCADA Data from Wind Turbines Using the K-Means Clustering Algorithm for Predictive Maintenance Purposes Cosa Rodríguez, Pablo predictive maintenance prognosis machine learning K-means |
title_short |
Exploratory Analysis of SCADA Data from Wind Turbines Using the K-Means Clustering Algorithm for Predictive Maintenance Purposes |
title_full |
Exploratory Analysis of SCADA Data from Wind Turbines Using the K-Means Clustering Algorithm for Predictive Maintenance Purposes |
title_fullStr |
Exploratory Analysis of SCADA Data from Wind Turbines Using the K-Means Clustering Algorithm for Predictive Maintenance Purposes |
title_full_unstemmed |
Exploratory Analysis of SCADA Data from Wind Turbines Using the K-Means Clustering Algorithm for Predictive Maintenance Purposes |
title_sort |
Exploratory Analysis of SCADA Data from Wind Turbines Using the K-Means Clustering Algorithm for Predictive Maintenance Purposes |
dc.creator.none.fl_str_mv |
Cosa Rodríguez, Pablo Martí Puig, Pere Caiafa, César Federico Serra Serra, Moises Cusidó, Jordi Solé Casals, Jordi |
author |
Cosa Rodríguez, Pablo |
author_facet |
Cosa Rodríguez, Pablo Martí Puig, Pere Caiafa, César Federico Serra Serra, Moises Cusidó, Jordi Solé Casals, Jordi |
author_role |
author |
author2 |
Martí Puig, Pere Caiafa, César Federico Serra Serra, Moises Cusidó, Jordi Solé Casals, Jordi |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
predictive maintenance prognosis machine learning K-means |
topic |
predictive maintenance prognosis machine learning K-means |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.7 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Product maintenance costs throughout the product’s lifetime can account for between 30–60% of total operating costs, making it necessary to implement maintenance strategies. This problem not only affects the economy but is also related to the impact on the environment, since breakdowns are also responsible for the delivery of greenhouse gases. Industrial maintenance is a set of measures of a technical-organizational nature whose purpose is to sustain the functionality of theequipment and guarantee an optimal state of the machines over time, with the aim of saving costs, extending the useful life of the machines, saving energy, maximising production and availability, ensuring the quality of the product obtained, providing job security for technicians, preserving the environment, and reducing emissions as much as possible. Machine learning techniques can be used to detect or predict faults in wind turbines. However, labelled data suffers from many problems in this application because alarms are usually not clearly associated with a specific fault, some labelsare wrongly associated with a problem, and the imbalance between labels is evident. To avoid using labelled data, we investigate here the use of the clustering technique, more specifically K-means, and boxplot representations of the variables for a set of six different tests. Experimental results show that in some cases, the clustering and boxplot techniques allow us to determine outliers or identify erroneous behaviours of the wind turbines. These cases can then be investigated in detail by a specialist so that more efficient predictive maintenance can be carried out. Fil: Cosa Rodríguez, Pablo. Open University of Catalonia. Faculty of Computer Science, Multimedia and Telecommunications.; España Fil: Martí Puig, Pere. University of Vic-Central. Data and Signal Processing Group; España Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina Fil: Serra Serra, Moises. University of Vic-Central. Data and Signal Processing Group; España Fil: Cusidó, Jordi. University of Vic-Central. Data and Signal Processing Group; España Fil: Solé Casals, Jordi. University of Vic-Central. Data and Signal Processing Group; España |
description |
Product maintenance costs throughout the product’s lifetime can account for between 30–60% of total operating costs, making it necessary to implement maintenance strategies. This problem not only affects the economy but is also related to the impact on the environment, since breakdowns are also responsible for the delivery of greenhouse gases. Industrial maintenance is a set of measures of a technical-organizational nature whose purpose is to sustain the functionality of theequipment and guarantee an optimal state of the machines over time, with the aim of saving costs, extending the useful life of the machines, saving energy, maximising production and availability, ensuring the quality of the product obtained, providing job security for technicians, preserving the environment, and reducing emissions as much as possible. Machine learning techniques can be used to detect or predict faults in wind turbines. However, labelled data suffers from many problems in this application because alarms are usually not clearly associated with a specific fault, some labelsare wrongly associated with a problem, and the imbalance between labels is evident. To avoid using labelled data, we investigate here the use of the clustering technique, more specifically K-means, and boxplot representations of the variables for a set of six different tests. Experimental results show that in some cases, the clustering and boxplot techniques allow us to determine outliers or identify erroneous behaviours of the wind turbines. These cases can then be investigated in detail by a specialist so that more efficient predictive maintenance can be carried out. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/218002 Cosa Rodríguez, Pablo; Martí Puig, Pere; Caiafa, César Federico; Serra Serra, Moises; Cusidó, Jordi; et al.; Exploratory Analysis of SCADA Data from Wind Turbines Using the K-Means Clustering Algorithm for Predictive Maintenance Purposes; MDPI; Machines; 11; 2; 2-2023; 1-15 2075-1702 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/218002 |
identifier_str_mv |
Cosa Rodríguez, Pablo; Martí Puig, Pere; Caiafa, César Federico; Serra Serra, Moises; Cusidó, Jordi; et al.; Exploratory Analysis of SCADA Data from Wind Turbines Using the K-Means Clustering Algorithm for Predictive Maintenance Purposes; MDPI; Machines; 11; 2; 2-2023; 1-15 2075-1702 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2075-1702/11/2/270/htm info:eu-repo/semantics/altIdentifier/doi/10.3390/machines11020270 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614144315097088 |
score |
13.070432 |