Performance Analysis of Simulated Annealing Using Adaptive Markov Chain Length
- Autores
- Bermúdez, Carlos; Alfonso, Hugo; Minetti, Gabriela F.; Salto, Carolina
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- In the Simulated Annealing (SA) algorithm, the Metropolis algorithm is applied to generate a sequence of solutions in the search space, known as the Markov chain. Usually, the algorithms employ the same Markov Chain Length (MCL) in the Metropolis cycle for each temperature. However, SA can use adaptive methods to compute the MCL. This work aims to analyze the effect of using different MCL strategies in SA behavior. This experimentation considers the Water Distribution Network Design (WDND) problem, a multimodal and NP-hard problem interesting to optimize. The results indicate that the use of adaptive MCL strategies improves the solution quality versus the static one.
Workshop: WASI – Agentes y Sistemas Inteligentes
Red de Universidades con Carreras en Informática - Materia
-
Ciencias Informáticas
Simulated annealing
Markov chain length
Water distribution network design
Optimization - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/130311
Ver los metadatos del registro completo
id |
SEDICI_75992b418dc23bdb34d767d7e6e1aa5a |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/130311 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Performance Analysis of Simulated Annealing Using Adaptive Markov Chain LengthBermúdez, CarlosAlfonso, HugoMinetti, Gabriela F.Salto, CarolinaCiencias InformáticasSimulated annealingMarkov chain lengthWater distribution network designOptimizationIn the Simulated Annealing (SA) algorithm, the Metropolis algorithm is applied to generate a sequence of solutions in the search space, known as the Markov chain. Usually, the algorithms employ the same Markov Chain Length (MCL) in the Metropolis cycle for each temperature. However, SA can use adaptive methods to compute the MCL. This work aims to analyze the effect of using different MCL strategies in SA behavior. This experimentation considers the Water Distribution Network Design (WDND) problem, a multimodal and NP-hard problem interesting to optimize. The results indicate that the use of adaptive MCL strategies improves the solution quality versus the static one.Workshop: WASI – Agentes y Sistemas InteligentesRed de Universidades con Carreras en Informática2021-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf21-30http://sedici.unlp.edu.ar/handle/10915/130311enginfo:eu-repo/semantics/altIdentifier/isbn/978-987-633-574-4info:eu-repo/semantics/reference/hdl/10915/129809info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:32:47Zoai:sedici.unlp.edu.ar:10915/130311Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:32:47.866SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Performance Analysis of Simulated Annealing Using Adaptive Markov Chain Length |
title |
Performance Analysis of Simulated Annealing Using Adaptive Markov Chain Length |
spellingShingle |
Performance Analysis of Simulated Annealing Using Adaptive Markov Chain Length Bermúdez, Carlos Ciencias Informáticas Simulated annealing Markov chain length Water distribution network design Optimization |
title_short |
Performance Analysis of Simulated Annealing Using Adaptive Markov Chain Length |
title_full |
Performance Analysis of Simulated Annealing Using Adaptive Markov Chain Length |
title_fullStr |
Performance Analysis of Simulated Annealing Using Adaptive Markov Chain Length |
title_full_unstemmed |
Performance Analysis of Simulated Annealing Using Adaptive Markov Chain Length |
title_sort |
Performance Analysis of Simulated Annealing Using Adaptive Markov Chain Length |
dc.creator.none.fl_str_mv |
Bermúdez, Carlos Alfonso, Hugo Minetti, Gabriela F. Salto, Carolina |
author |
Bermúdez, Carlos |
author_facet |
Bermúdez, Carlos Alfonso, Hugo Minetti, Gabriela F. Salto, Carolina |
author_role |
author |
author2 |
Alfonso, Hugo Minetti, Gabriela F. Salto, Carolina |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Simulated annealing Markov chain length Water distribution network design Optimization |
topic |
Ciencias Informáticas Simulated annealing Markov chain length Water distribution network design Optimization |
dc.description.none.fl_txt_mv |
In the Simulated Annealing (SA) algorithm, the Metropolis algorithm is applied to generate a sequence of solutions in the search space, known as the Markov chain. Usually, the algorithms employ the same Markov Chain Length (MCL) in the Metropolis cycle for each temperature. However, SA can use adaptive methods to compute the MCL. This work aims to analyze the effect of using different MCL strategies in SA behavior. This experimentation considers the Water Distribution Network Design (WDND) problem, a multimodal and NP-hard problem interesting to optimize. The results indicate that the use of adaptive MCL strategies improves the solution quality versus the static one. Workshop: WASI – Agentes y Sistemas Inteligentes Red de Universidades con Carreras en Informática |
description |
In the Simulated Annealing (SA) algorithm, the Metropolis algorithm is applied to generate a sequence of solutions in the search space, known as the Markov chain. Usually, the algorithms employ the same Markov Chain Length (MCL) in the Metropolis cycle for each temperature. However, SA can use adaptive methods to compute the MCL. This work aims to analyze the effect of using different MCL strategies in SA behavior. This experimentation considers the Water Distribution Network Design (WDND) problem, a multimodal and NP-hard problem interesting to optimize. The results indicate that the use of adaptive MCL strategies improves the solution quality versus the static one. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/130311 |
url |
http://sedici.unlp.edu.ar/handle/10915/130311 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-987-633-574-4 info:eu-repo/semantics/reference/hdl/10915/129809 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 21-30 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616207184953344 |
score |
13.069144 |