Dilogarithm ladders from Wilson loops

Autores
Bianchi, Marco S.; Leoni Olivera, Matías
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider a light-like Wilson loop in N = 4 SYM evaluated on a regular n-polygon contour. Sending the number of edges to infinity the polygon approximates a circle and the expectation value of the light-like WL is expected to tend to the localization result for the circular one. We show this explicitly at one loop, providing a prescription to deal with the divergences of the light-like WL and the large n limit. Taking this limit entails evaluating certain sums of dilogarithms which, for a regular polygon, evaluate to the same constant independently of n. We show that this occurs thanks to underlying dilogarithm identities, related to the so-called “polylogarithm ladders”, which appear in rather different contexts of physics and mathematics and enable us to perform the large n limit analytically.
Instituto de Física La Plata
Materia
Ciencias Exactas
Física
Scattering Amplitudes
Wilson
’t Hooft and Polyakov loops
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/86014

id SEDICI_733765a5ea07a1bdacc8168e7dbed3e0
oai_identifier_str oai:sedici.unlp.edu.ar:10915/86014
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Dilogarithm ladders from Wilson loopsBianchi, Marco S.Leoni Olivera, MatíasCiencias ExactasFísicaScattering AmplitudesWilson’t Hooft and Polyakov loopsWe consider a light-like Wilson loop in N = 4 SYM evaluated on a regular n-polygon contour. Sending the number of edges to infinity the polygon approximates a circle and the expectation value of the light-like WL is expected to tend to the localization result for the circular one. We show this explicitly at one loop, providing a prescription to deal with the divergences of the light-like WL and the large n limit. Taking this limit entails evaluating certain sums of dilogarithms which, for a regular polygon, evaluate to the same constant independently of n. We show that this occurs thanks to underlying dilogarithm identities, related to the so-called “polylogarithm ladders”, which appear in rather different contexts of physics and mathematics and enable us to perform the large n limit analytically.Instituto de Física La Plata2015info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/86014enginfo:eu-repo/semantics/altIdentifier/issn/1126-6708info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP02(2015)180info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:08:51Zoai:sedici.unlp.edu.ar:10915/86014Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:08:51.689SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Dilogarithm ladders from Wilson loops
title Dilogarithm ladders from Wilson loops
spellingShingle Dilogarithm ladders from Wilson loops
Bianchi, Marco S.
Ciencias Exactas
Física
Scattering Amplitudes
Wilson
’t Hooft and Polyakov loops
title_short Dilogarithm ladders from Wilson loops
title_full Dilogarithm ladders from Wilson loops
title_fullStr Dilogarithm ladders from Wilson loops
title_full_unstemmed Dilogarithm ladders from Wilson loops
title_sort Dilogarithm ladders from Wilson loops
dc.creator.none.fl_str_mv Bianchi, Marco S.
Leoni Olivera, Matías
author Bianchi, Marco S.
author_facet Bianchi, Marco S.
Leoni Olivera, Matías
author_role author
author2 Leoni Olivera, Matías
author2_role author
dc.subject.none.fl_str_mv Ciencias Exactas
Física
Scattering Amplitudes
Wilson
’t Hooft and Polyakov loops
topic Ciencias Exactas
Física
Scattering Amplitudes
Wilson
’t Hooft and Polyakov loops
dc.description.none.fl_txt_mv We consider a light-like Wilson loop in N = 4 SYM evaluated on a regular n-polygon contour. Sending the number of edges to infinity the polygon approximates a circle and the expectation value of the light-like WL is expected to tend to the localization result for the circular one. We show this explicitly at one loop, providing a prescription to deal with the divergences of the light-like WL and the large n limit. Taking this limit entails evaluating certain sums of dilogarithms which, for a regular polygon, evaluate to the same constant independently of n. We show that this occurs thanks to underlying dilogarithm identities, related to the so-called “polylogarithm ladders”, which appear in rather different contexts of physics and mathematics and enable us to perform the large n limit analytically.
Instituto de Física La Plata
description We consider a light-like Wilson loop in N = 4 SYM evaluated on a regular n-polygon contour. Sending the number of edges to infinity the polygon approximates a circle and the expectation value of the light-like WL is expected to tend to the localization result for the circular one. We show this explicitly at one loop, providing a prescription to deal with the divergences of the light-like WL and the large n limit. Taking this limit entails evaluating certain sums of dilogarithms which, for a regular polygon, evaluate to the same constant independently of n. We show that this occurs thanks to underlying dilogarithm identities, related to the so-called “polylogarithm ladders”, which appear in rather different contexts of physics and mathematics and enable us to perform the large n limit analytically.
publishDate 2015
dc.date.none.fl_str_mv 2015
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/86014
url http://sedici.unlp.edu.ar/handle/10915/86014
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1126-6708
info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP02(2015)180
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064145385914368
score 13.22299