Dilogarithm ladders from Wilson loops
- Autores
- Bianchi, Marco S.; Leoni Olivera, Matías
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider a light-like Wilson loop in N = 4 SYM evaluated on a regular n-polygon contour. Sending the number of edges to infinity the polygon approximates a circle and the expectation value of the light-like WL is expected to tend to the localization result for the circular one. We show this explicitly at one loop, providing a prescription to deal with the divergences of the light-like WL and the large n limit. Taking this limit entails evaluating certain sums of dilogarithms which, for a regular polygon, evaluate to the same constant independently of n. We show that this occurs thanks to underlying dilogarithm identities, related to the so-called “polylogarithm ladders”, which appear in rather different contexts of physics and mathematics and enable us to perform the large n limit analytically.
Instituto de Física La Plata - Materia
-
Ciencias Exactas
Física
Scattering Amplitudes
Wilson
’t Hooft and Polyakov loops - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/86014
Ver los metadatos del registro completo
| id |
SEDICI_733765a5ea07a1bdacc8168e7dbed3e0 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/86014 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Dilogarithm ladders from Wilson loopsBianchi, Marco S.Leoni Olivera, MatíasCiencias ExactasFísicaScattering AmplitudesWilson’t Hooft and Polyakov loopsWe consider a light-like Wilson loop in N = 4 SYM evaluated on a regular n-polygon contour. Sending the number of edges to infinity the polygon approximates a circle and the expectation value of the light-like WL is expected to tend to the localization result for the circular one. We show this explicitly at one loop, providing a prescription to deal with the divergences of the light-like WL and the large n limit. Taking this limit entails evaluating certain sums of dilogarithms which, for a regular polygon, evaluate to the same constant independently of n. We show that this occurs thanks to underlying dilogarithm identities, related to the so-called “polylogarithm ladders”, which appear in rather different contexts of physics and mathematics and enable us to perform the large n limit analytically.Instituto de Física La Plata2015info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/86014enginfo:eu-repo/semantics/altIdentifier/issn/1126-6708info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP02(2015)180info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-11-12T10:41:17Zoai:sedici.unlp.edu.ar:10915/86014Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-11-12 10:41:17.288SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Dilogarithm ladders from Wilson loops |
| title |
Dilogarithm ladders from Wilson loops |
| spellingShingle |
Dilogarithm ladders from Wilson loops Bianchi, Marco S. Ciencias Exactas Física Scattering Amplitudes Wilson ’t Hooft and Polyakov loops |
| title_short |
Dilogarithm ladders from Wilson loops |
| title_full |
Dilogarithm ladders from Wilson loops |
| title_fullStr |
Dilogarithm ladders from Wilson loops |
| title_full_unstemmed |
Dilogarithm ladders from Wilson loops |
| title_sort |
Dilogarithm ladders from Wilson loops |
| dc.creator.none.fl_str_mv |
Bianchi, Marco S. Leoni Olivera, Matías |
| author |
Bianchi, Marco S. |
| author_facet |
Bianchi, Marco S. Leoni Olivera, Matías |
| author_role |
author |
| author2 |
Leoni Olivera, Matías |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Ciencias Exactas Física Scattering Amplitudes Wilson ’t Hooft and Polyakov loops |
| topic |
Ciencias Exactas Física Scattering Amplitudes Wilson ’t Hooft and Polyakov loops |
| dc.description.none.fl_txt_mv |
We consider a light-like Wilson loop in N = 4 SYM evaluated on a regular n-polygon contour. Sending the number of edges to infinity the polygon approximates a circle and the expectation value of the light-like WL is expected to tend to the localization result for the circular one. We show this explicitly at one loop, providing a prescription to deal with the divergences of the light-like WL and the large n limit. Taking this limit entails evaluating certain sums of dilogarithms which, for a regular polygon, evaluate to the same constant independently of n. We show that this occurs thanks to underlying dilogarithm identities, related to the so-called “polylogarithm ladders”, which appear in rather different contexts of physics and mathematics and enable us to perform the large n limit analytically. Instituto de Física La Plata |
| description |
We consider a light-like Wilson loop in N = 4 SYM evaluated on a regular n-polygon contour. Sending the number of edges to infinity the polygon approximates a circle and the expectation value of the light-like WL is expected to tend to the localization result for the circular one. We show this explicitly at one loop, providing a prescription to deal with the divergences of the light-like WL and the large n limit. Taking this limit entails evaluating certain sums of dilogarithms which, for a regular polygon, evaluate to the same constant independently of n. We show that this occurs thanks to underlying dilogarithm identities, related to the so-called “polylogarithm ladders”, which appear in rather different contexts of physics and mathematics and enable us to perform the large n limit analytically. |
| publishDate |
2015 |
| dc.date.none.fl_str_mv |
2015 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/86014 |
| url |
http://sedici.unlp.edu.ar/handle/10915/86014 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1126-6708 info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP02(2015)180 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1848605496072732672 |
| score |
12.976206 |