Dilogarithm ladders from Wilson loops
- Autores
- Bianchi, Marco Andrés; Leoni Olivera, Matías
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider a light-like Wilson loop in N = 4 SYM evaluated on a regular n-polygon contour. Sending the number of edges to infinity the polygon approximates a circle and the expectation value of the light-like WL is expected to tend to the localization result for the circular one. We show this explicitly at one loop, providing a prescription to deal with the divergences of the light-like WL and the large n limit. Taking this limit entails evaluating certain sums of dilogarithms which, for a regular polygon, evaluate to the same constant independently of n. We show that this occurs thanks to underlying dilogarithm identities, related to the so-called “polylogarithm ladders”, which appear in rather different contexts of physics and mathematics and enable us to perform the large n limit analytically.
Fil: Bianchi, Marco Andrés. Queen Mary University of London; Reino Unido
Fil: Leoni Olivera, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina - Materia
-
SCATTERING AMPLITUDES
WILSON
’T HOOFT AND POLYAKOV LOOPS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/39832
Ver los metadatos del registro completo
id |
CONICETDig_63624b69eed49b735bd5508f8c516169 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/39832 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Dilogarithm ladders from Wilson loopsBianchi, Marco AndrésLeoni Olivera, MatíasSCATTERING AMPLITUDESWILSON’T HOOFT AND POLYAKOV LOOPShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We consider a light-like Wilson loop in N = 4 SYM evaluated on a regular n-polygon contour. Sending the number of edges to infinity the polygon approximates a circle and the expectation value of the light-like WL is expected to tend to the localization result for the circular one. We show this explicitly at one loop, providing a prescription to deal with the divergences of the light-like WL and the large n limit. Taking this limit entails evaluating certain sums of dilogarithms which, for a regular polygon, evaluate to the same constant independently of n. We show that this occurs thanks to underlying dilogarithm identities, related to the so-called “polylogarithm ladders”, which appear in rather different contexts of physics and mathematics and enable us to perform the large n limit analytically.Fil: Bianchi, Marco Andrés. Queen Mary University of London; Reino UnidoFil: Leoni Olivera, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaSpringer2015-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/39832Bianchi, Marco Andrés; Leoni Olivera, Matías; Dilogarithm ladders from Wilson loops; Springer; Journal of High Energy Physics; 2015; 2; 2-2015; 1-131029-84791126-6708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP02(2015)180info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP02(2015)180info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1411.5012info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:46:22Zoai:ri.conicet.gov.ar:11336/39832instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:46:22.989CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Dilogarithm ladders from Wilson loops |
title |
Dilogarithm ladders from Wilson loops |
spellingShingle |
Dilogarithm ladders from Wilson loops Bianchi, Marco Andrés SCATTERING AMPLITUDES WILSON ’T HOOFT AND POLYAKOV LOOPS |
title_short |
Dilogarithm ladders from Wilson loops |
title_full |
Dilogarithm ladders from Wilson loops |
title_fullStr |
Dilogarithm ladders from Wilson loops |
title_full_unstemmed |
Dilogarithm ladders from Wilson loops |
title_sort |
Dilogarithm ladders from Wilson loops |
dc.creator.none.fl_str_mv |
Bianchi, Marco Andrés Leoni Olivera, Matías |
author |
Bianchi, Marco Andrés |
author_facet |
Bianchi, Marco Andrés Leoni Olivera, Matías |
author_role |
author |
author2 |
Leoni Olivera, Matías |
author2_role |
author |
dc.subject.none.fl_str_mv |
SCATTERING AMPLITUDES WILSON ’T HOOFT AND POLYAKOV LOOPS |
topic |
SCATTERING AMPLITUDES WILSON ’T HOOFT AND POLYAKOV LOOPS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider a light-like Wilson loop in N = 4 SYM evaluated on a regular n-polygon contour. Sending the number of edges to infinity the polygon approximates a circle and the expectation value of the light-like WL is expected to tend to the localization result for the circular one. We show this explicitly at one loop, providing a prescription to deal with the divergences of the light-like WL and the large n limit. Taking this limit entails evaluating certain sums of dilogarithms which, for a regular polygon, evaluate to the same constant independently of n. We show that this occurs thanks to underlying dilogarithm identities, related to the so-called “polylogarithm ladders”, which appear in rather different contexts of physics and mathematics and enable us to perform the large n limit analytically. Fil: Bianchi, Marco Andrés. Queen Mary University of London; Reino Unido Fil: Leoni Olivera, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina |
description |
We consider a light-like Wilson loop in N = 4 SYM evaluated on a regular n-polygon contour. Sending the number of edges to infinity the polygon approximates a circle and the expectation value of the light-like WL is expected to tend to the localization result for the circular one. We show this explicitly at one loop, providing a prescription to deal with the divergences of the light-like WL and the large n limit. Taking this limit entails evaluating certain sums of dilogarithms which, for a regular polygon, evaluate to the same constant independently of n. We show that this occurs thanks to underlying dilogarithm identities, related to the so-called “polylogarithm ladders”, which appear in rather different contexts of physics and mathematics and enable us to perform the large n limit analytically. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/39832 Bianchi, Marco Andrés; Leoni Olivera, Matías; Dilogarithm ladders from Wilson loops; Springer; Journal of High Energy Physics; 2015; 2; 2-2015; 1-13 1029-8479 1126-6708 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/39832 |
identifier_str_mv |
Bianchi, Marco Andrés; Leoni Olivera, Matías; Dilogarithm ladders from Wilson loops; Springer; Journal of High Energy Physics; 2015; 2; 2-2015; 1-13 1029-8479 1126-6708 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP02(2015)180 info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP02(2015)180 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1411.5012 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268790523428864 |
score |
13.13397 |