Dilogarithm ladders from Wilson loops

Autores
Bianchi, Marco Andrés; Leoni Olivera, Matías
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider a light-like Wilson loop in N = 4 SYM evaluated on a regular n-polygon contour. Sending the number of edges to infinity the polygon approximates a circle and the expectation value of the light-like WL is expected to tend to the localization result for the circular one. We show this explicitly at one loop, providing a prescription to deal with the divergences of the light-like WL and the large n limit. Taking this limit entails evaluating certain sums of dilogarithms which, for a regular polygon, evaluate to the same constant independently of n. We show that this occurs thanks to underlying dilogarithm identities, related to the so-called “polylogarithm ladders”, which appear in rather different contexts of physics and mathematics and enable us to perform the large n limit analytically.
Fil: Bianchi, Marco Andrés. Queen Mary University of London; Reino Unido
Fil: Leoni Olivera, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Materia
SCATTERING AMPLITUDES
WILSON
’T HOOFT AND POLYAKOV LOOPS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/39832

id CONICETDig_63624b69eed49b735bd5508f8c516169
oai_identifier_str oai:ri.conicet.gov.ar:11336/39832
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Dilogarithm ladders from Wilson loopsBianchi, Marco AndrésLeoni Olivera, MatíasSCATTERING AMPLITUDESWILSON’T HOOFT AND POLYAKOV LOOPShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We consider a light-like Wilson loop in N = 4 SYM evaluated on a regular n-polygon contour. Sending the number of edges to infinity the polygon approximates a circle and the expectation value of the light-like WL is expected to tend to the localization result for the circular one. We show this explicitly at one loop, providing a prescription to deal with the divergences of the light-like WL and the large n limit. Taking this limit entails evaluating certain sums of dilogarithms which, for a regular polygon, evaluate to the same constant independently of n. We show that this occurs thanks to underlying dilogarithm identities, related to the so-called “polylogarithm ladders”, which appear in rather different contexts of physics and mathematics and enable us to perform the large n limit analytically.Fil: Bianchi, Marco Andrés. Queen Mary University of London; Reino UnidoFil: Leoni Olivera, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaSpringer2015-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/39832Bianchi, Marco Andrés; Leoni Olivera, Matías; Dilogarithm ladders from Wilson loops; Springer; Journal of High Energy Physics; 2015; 2; 2-2015; 1-131029-84791126-6708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP02(2015)180info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP02(2015)180info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1411.5012info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:46:22Zoai:ri.conicet.gov.ar:11336/39832instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:46:22.989CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Dilogarithm ladders from Wilson loops
title Dilogarithm ladders from Wilson loops
spellingShingle Dilogarithm ladders from Wilson loops
Bianchi, Marco Andrés
SCATTERING AMPLITUDES
WILSON
’T HOOFT AND POLYAKOV LOOPS
title_short Dilogarithm ladders from Wilson loops
title_full Dilogarithm ladders from Wilson loops
title_fullStr Dilogarithm ladders from Wilson loops
title_full_unstemmed Dilogarithm ladders from Wilson loops
title_sort Dilogarithm ladders from Wilson loops
dc.creator.none.fl_str_mv Bianchi, Marco Andrés
Leoni Olivera, Matías
author Bianchi, Marco Andrés
author_facet Bianchi, Marco Andrés
Leoni Olivera, Matías
author_role author
author2 Leoni Olivera, Matías
author2_role author
dc.subject.none.fl_str_mv SCATTERING AMPLITUDES
WILSON
’T HOOFT AND POLYAKOV LOOPS
topic SCATTERING AMPLITUDES
WILSON
’T HOOFT AND POLYAKOV LOOPS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We consider a light-like Wilson loop in N = 4 SYM evaluated on a regular n-polygon contour. Sending the number of edges to infinity the polygon approximates a circle and the expectation value of the light-like WL is expected to tend to the localization result for the circular one. We show this explicitly at one loop, providing a prescription to deal with the divergences of the light-like WL and the large n limit. Taking this limit entails evaluating certain sums of dilogarithms which, for a regular polygon, evaluate to the same constant independently of n. We show that this occurs thanks to underlying dilogarithm identities, related to the so-called “polylogarithm ladders”, which appear in rather different contexts of physics and mathematics and enable us to perform the large n limit analytically.
Fil: Bianchi, Marco Andrés. Queen Mary University of London; Reino Unido
Fil: Leoni Olivera, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
description We consider a light-like Wilson loop in N = 4 SYM evaluated on a regular n-polygon contour. Sending the number of edges to infinity the polygon approximates a circle and the expectation value of the light-like WL is expected to tend to the localization result for the circular one. We show this explicitly at one loop, providing a prescription to deal with the divergences of the light-like WL and the large n limit. Taking this limit entails evaluating certain sums of dilogarithms which, for a regular polygon, evaluate to the same constant independently of n. We show that this occurs thanks to underlying dilogarithm identities, related to the so-called “polylogarithm ladders”, which appear in rather different contexts of physics and mathematics and enable us to perform the large n limit analytically.
publishDate 2015
dc.date.none.fl_str_mv 2015-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/39832
Bianchi, Marco Andrés; Leoni Olivera, Matías; Dilogarithm ladders from Wilson loops; Springer; Journal of High Energy Physics; 2015; 2; 2-2015; 1-13
1029-8479
1126-6708
CONICET Digital
CONICET
url http://hdl.handle.net/11336/39832
identifier_str_mv Bianchi, Marco Andrés; Leoni Olivera, Matías; Dilogarithm ladders from Wilson loops; Springer; Journal of High Energy Physics; 2015; 2; 2-2015; 1-13
1029-8479
1126-6708
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP02(2015)180
info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP02(2015)180
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1411.5012
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268790523428864
score 13.13397