Pebbling in semi-2-trees
- Autores
- Alcón, Liliana Graciela; Gutiérrez, Marisa; Hurlbert, Glenn
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Graph pebbling is a network model for transporting discrete resources that are consumed in transit. Deciding whether a given configuration on a particular graph can reach a specified target is NP-complete, even for diameter two graphs, and deciding whether the pebbling number has a prescribed upper bound is Πᴾ₂-complete. Recently we proved that the pebbling number of a split graph can be computed in polynomial time. This paper advances the program of finding other polynomial classes, moving away from the large tree width, small diameter case (such as split graphs) to small tree width, large diameter, continuing an investigation on the important subfamily of chordal graphs called k-trees. In particular, we provide a formula, that can be calculated in polynomial time, for the pebbling number of any semi-2-tree, falling shy of the result for the full class of 2-trees.
Facultad de Ciencias Exactas
Departamento de Matemática - Materia
-
Ciencias Exactas
Matemática
pebbling number
k-trees
k-paths
class 0
complexity - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/162382
Ver los metadatos del registro completo
id |
SEDICI_73145c3bdbf15e89a8ed613a38a639b5 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/162382 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Pebbling in semi-2-treesAlcón, Liliana GracielaGutiérrez, MarisaHurlbert, GlennCiencias ExactasMatemáticapebbling numberk-treesk-pathsclass 0complexityGraph pebbling is a network model for transporting discrete resources that are consumed in transit. Deciding whether a given configuration on a particular graph can reach a specified target is NP-complete, even for diameter two graphs, and deciding whether the pebbling number has a prescribed upper bound is Πᴾ₂-complete. Recently we proved that the pebbling number of a split graph can be computed in polynomial time. This paper advances the program of finding other polynomial classes, moving away from the large tree width, small diameter case (such as split graphs) to small tree width, large diameter, continuing an investigation on the important subfamily of chordal graphs called k-trees. In particular, we provide a formula, that can be calculated in polynomial time, for the pebbling number of any semi-2-tree, falling shy of the result for the full class of 2-trees.Facultad de Ciencias ExactasDepartamento de Matemática2017-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1467-1480http://sedici.unlp.edu.ar/handle/10915/162382enginfo:eu-repo/semantics/altIdentifier/issn/0012-365Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.disc.2017.02.011info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:42:41Zoai:sedici.unlp.edu.ar:10915/162382Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:42:41.361SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Pebbling in semi-2-trees |
title |
Pebbling in semi-2-trees |
spellingShingle |
Pebbling in semi-2-trees Alcón, Liliana Graciela Ciencias Exactas Matemática pebbling number k-trees k-paths class 0 complexity |
title_short |
Pebbling in semi-2-trees |
title_full |
Pebbling in semi-2-trees |
title_fullStr |
Pebbling in semi-2-trees |
title_full_unstemmed |
Pebbling in semi-2-trees |
title_sort |
Pebbling in semi-2-trees |
dc.creator.none.fl_str_mv |
Alcón, Liliana Graciela Gutiérrez, Marisa Hurlbert, Glenn |
author |
Alcón, Liliana Graciela |
author_facet |
Alcón, Liliana Graciela Gutiérrez, Marisa Hurlbert, Glenn |
author_role |
author |
author2 |
Gutiérrez, Marisa Hurlbert, Glenn |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Exactas Matemática pebbling number k-trees k-paths class 0 complexity |
topic |
Ciencias Exactas Matemática pebbling number k-trees k-paths class 0 complexity |
dc.description.none.fl_txt_mv |
Graph pebbling is a network model for transporting discrete resources that are consumed in transit. Deciding whether a given configuration on a particular graph can reach a specified target is NP-complete, even for diameter two graphs, and deciding whether the pebbling number has a prescribed upper bound is Πᴾ₂-complete. Recently we proved that the pebbling number of a split graph can be computed in polynomial time. This paper advances the program of finding other polynomial classes, moving away from the large tree width, small diameter case (such as split graphs) to small tree width, large diameter, continuing an investigation on the important subfamily of chordal graphs called k-trees. In particular, we provide a formula, that can be calculated in polynomial time, for the pebbling number of any semi-2-tree, falling shy of the result for the full class of 2-trees. Facultad de Ciencias Exactas Departamento de Matemática |
description |
Graph pebbling is a network model for transporting discrete resources that are consumed in transit. Deciding whether a given configuration on a particular graph can reach a specified target is NP-complete, even for diameter two graphs, and deciding whether the pebbling number has a prescribed upper bound is Πᴾ₂-complete. Recently we proved that the pebbling number of a split graph can be computed in polynomial time. This paper advances the program of finding other polynomial classes, moving away from the large tree width, small diameter case (such as split graphs) to small tree width, large diameter, continuing an investigation on the important subfamily of chordal graphs called k-trees. In particular, we provide a formula, that can be calculated in polynomial time, for the pebbling number of any semi-2-tree, falling shy of the result for the full class of 2-trees. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/162382 |
url |
http://sedici.unlp.edu.ar/handle/10915/162382 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0012-365X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.disc.2017.02.011 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf 1467-1480 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616296559280128 |
score |
13.070432 |