Pebbling in semi-2-trees

Autores
Alcón, Liliana Graciela; Gutiérrez, Marisa; Hurlbert, Glenn
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Graph pebbling is a network model for transporting discrete resources that are consumed in transit. Deciding whether a given configuration on a particular graph can reach a specified target is NP-complete, even for diameter two graphs, and deciding whether the pebbling number has a prescribed upper bound is Πᴾ₂-complete. Recently we proved that the pebbling number of a split graph can be computed in polynomial time. This paper advances the program of finding other polynomial classes, moving away from the large tree width, small diameter case (such as split graphs) to small tree width, large diameter, continuing an investigation on the important subfamily of chordal graphs called k-trees. In particular, we provide a formula, that can be calculated in polynomial time, for the pebbling number of any semi-2-tree, falling shy of the result for the full class of 2-trees.
Facultad de Ciencias Exactas
Departamento de Matemática
Materia
Ciencias Exactas
Matemática
pebbling number
k-trees
k-paths
class 0
complexity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/162382

id SEDICI_73145c3bdbf15e89a8ed613a38a639b5
oai_identifier_str oai:sedici.unlp.edu.ar:10915/162382
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Pebbling in semi-2-treesAlcón, Liliana GracielaGutiérrez, MarisaHurlbert, GlennCiencias ExactasMatemáticapebbling numberk-treesk-pathsclass 0complexityGraph pebbling is a network model for transporting discrete resources that are consumed in transit. Deciding whether a given configuration on a particular graph can reach a specified target is NP-complete, even for diameter two graphs, and deciding whether the pebbling number has a prescribed upper bound is Πᴾ₂-complete. Recently we proved that the pebbling number of a split graph can be computed in polynomial time. This paper advances the program of finding other polynomial classes, moving away from the large tree width, small diameter case (such as split graphs) to small tree width, large diameter, continuing an investigation on the important subfamily of chordal graphs called k-trees. In particular, we provide a formula, that can be calculated in polynomial time, for the pebbling number of any semi-2-tree, falling shy of the result for the full class of 2-trees.Facultad de Ciencias ExactasDepartamento de Matemática2017-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1467-1480http://sedici.unlp.edu.ar/handle/10915/162382enginfo:eu-repo/semantics/altIdentifier/issn/0012-365Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.disc.2017.02.011info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:42:41Zoai:sedici.unlp.edu.ar:10915/162382Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:42:41.361SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Pebbling in semi-2-trees
title Pebbling in semi-2-trees
spellingShingle Pebbling in semi-2-trees
Alcón, Liliana Graciela
Ciencias Exactas
Matemática
pebbling number
k-trees
k-paths
class 0
complexity
title_short Pebbling in semi-2-trees
title_full Pebbling in semi-2-trees
title_fullStr Pebbling in semi-2-trees
title_full_unstemmed Pebbling in semi-2-trees
title_sort Pebbling in semi-2-trees
dc.creator.none.fl_str_mv Alcón, Liliana Graciela
Gutiérrez, Marisa
Hurlbert, Glenn
author Alcón, Liliana Graciela
author_facet Alcón, Liliana Graciela
Gutiérrez, Marisa
Hurlbert, Glenn
author_role author
author2 Gutiérrez, Marisa
Hurlbert, Glenn
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Exactas
Matemática
pebbling number
k-trees
k-paths
class 0
complexity
topic Ciencias Exactas
Matemática
pebbling number
k-trees
k-paths
class 0
complexity
dc.description.none.fl_txt_mv Graph pebbling is a network model for transporting discrete resources that are consumed in transit. Deciding whether a given configuration on a particular graph can reach a specified target is NP-complete, even for diameter two graphs, and deciding whether the pebbling number has a prescribed upper bound is Πᴾ₂-complete. Recently we proved that the pebbling number of a split graph can be computed in polynomial time. This paper advances the program of finding other polynomial classes, moving away from the large tree width, small diameter case (such as split graphs) to small tree width, large diameter, continuing an investigation on the important subfamily of chordal graphs called k-trees. In particular, we provide a formula, that can be calculated in polynomial time, for the pebbling number of any semi-2-tree, falling shy of the result for the full class of 2-trees.
Facultad de Ciencias Exactas
Departamento de Matemática
description Graph pebbling is a network model for transporting discrete resources that are consumed in transit. Deciding whether a given configuration on a particular graph can reach a specified target is NP-complete, even for diameter two graphs, and deciding whether the pebbling number has a prescribed upper bound is Πᴾ₂-complete. Recently we proved that the pebbling number of a split graph can be computed in polynomial time. This paper advances the program of finding other polynomial classes, moving away from the large tree width, small diameter case (such as split graphs) to small tree width, large diameter, continuing an investigation on the important subfamily of chordal graphs called k-trees. In particular, we provide a formula, that can be calculated in polynomial time, for the pebbling number of any semi-2-tree, falling shy of the result for the full class of 2-trees.
publishDate 2017
dc.date.none.fl_str_mv 2017-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/162382
url http://sedici.unlp.edu.ar/handle/10915/162382
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0012-365X
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.disc.2017.02.011
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
1467-1480
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616296559280128
score 13.070432