Pebbling in semi-2-trees
- Autores
- Alcón, Liliana Graciela; Gutierrez, Marisa; Hulbert, Glenn
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Graph pebbling is a network model for transporting discrete resources that are consumed in transit. Deciding whether a given configuration on a particular graph can reach a specified target is NP-complete, even for diameter two graphs, and deciding whether the pebbling number has a prescribed upper bound is Π2 P-complete. Recently we proved that the pebbling number of a split graph can be computed in polynomial time. This paper advances the program of finding other polynomial classes, moving away from the large tree width, small diameter case (such as split graphs) to small tree width, large diameter, continuing an investigation on the important subfamily of chordal graphs called k-trees. In particular, we provide a formula, that can be calculated in polynomial time, for the pebbling number of any semi-2-tree, falling shy of the result for the full class of 2-trees.
Fil: Alcón, Liliana Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Gutierrez, Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Hulbert, Glenn. Virginia Commonwealth University; Estados Unidos - Materia
-
Class 0
Complexity
K-Paths
K-Trees
Pebbling Number - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/75234
Ver los metadatos del registro completo
id |
CONICETDig_762169e20e8bbe49cd7fc04220fa8ca4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/75234 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Pebbling in semi-2-treesAlcón, Liliana GracielaGutierrez, MarisaHulbert, GlennClass 0ComplexityK-PathsK-TreesPebbling Numberhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Graph pebbling is a network model for transporting discrete resources that are consumed in transit. Deciding whether a given configuration on a particular graph can reach a specified target is NP-complete, even for diameter two graphs, and deciding whether the pebbling number has a prescribed upper bound is Π2 P-complete. Recently we proved that the pebbling number of a split graph can be computed in polynomial time. This paper advances the program of finding other polynomial classes, moving away from the large tree width, small diameter case (such as split graphs) to small tree width, large diameter, continuing an investigation on the important subfamily of chordal graphs called k-trees. In particular, we provide a formula, that can be calculated in polynomial time, for the pebbling number of any semi-2-tree, falling shy of the result for the full class of 2-trees.Fil: Alcón, Liliana Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: Gutierrez, Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: Hulbert, Glenn. Virginia Commonwealth University; Estados UnidosElsevier Science2017-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/75234Alcón, Liliana Graciela; Gutierrez, Marisa; Hulbert, Glenn; Pebbling in semi-2-trees; Elsevier Science; Discrete Mathematics; 340; 7; 7-2017; 1467-14800012-365XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.disc.2017.02.011info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0012365X17300481info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:38Zoai:ri.conicet.gov.ar:11336/75234instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:38.349CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Pebbling in semi-2-trees |
title |
Pebbling in semi-2-trees |
spellingShingle |
Pebbling in semi-2-trees Alcón, Liliana Graciela Class 0 Complexity K-Paths K-Trees Pebbling Number |
title_short |
Pebbling in semi-2-trees |
title_full |
Pebbling in semi-2-trees |
title_fullStr |
Pebbling in semi-2-trees |
title_full_unstemmed |
Pebbling in semi-2-trees |
title_sort |
Pebbling in semi-2-trees |
dc.creator.none.fl_str_mv |
Alcón, Liliana Graciela Gutierrez, Marisa Hulbert, Glenn |
author |
Alcón, Liliana Graciela |
author_facet |
Alcón, Liliana Graciela Gutierrez, Marisa Hulbert, Glenn |
author_role |
author |
author2 |
Gutierrez, Marisa Hulbert, Glenn |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Class 0 Complexity K-Paths K-Trees Pebbling Number |
topic |
Class 0 Complexity K-Paths K-Trees Pebbling Number |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Graph pebbling is a network model for transporting discrete resources that are consumed in transit. Deciding whether a given configuration on a particular graph can reach a specified target is NP-complete, even for diameter two graphs, and deciding whether the pebbling number has a prescribed upper bound is Π2 P-complete. Recently we proved that the pebbling number of a split graph can be computed in polynomial time. This paper advances the program of finding other polynomial classes, moving away from the large tree width, small diameter case (such as split graphs) to small tree width, large diameter, continuing an investigation on the important subfamily of chordal graphs called k-trees. In particular, we provide a formula, that can be calculated in polynomial time, for the pebbling number of any semi-2-tree, falling shy of the result for the full class of 2-trees. Fil: Alcón, Liliana Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina Fil: Gutierrez, Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina Fil: Hulbert, Glenn. Virginia Commonwealth University; Estados Unidos |
description |
Graph pebbling is a network model for transporting discrete resources that are consumed in transit. Deciding whether a given configuration on a particular graph can reach a specified target is NP-complete, even for diameter two graphs, and deciding whether the pebbling number has a prescribed upper bound is Π2 P-complete. Recently we proved that the pebbling number of a split graph can be computed in polynomial time. This paper advances the program of finding other polynomial classes, moving away from the large tree width, small diameter case (such as split graphs) to small tree width, large diameter, continuing an investigation on the important subfamily of chordal graphs called k-trees. In particular, we provide a formula, that can be calculated in polynomial time, for the pebbling number of any semi-2-tree, falling shy of the result for the full class of 2-trees. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/75234 Alcón, Liliana Graciela; Gutierrez, Marisa; Hulbert, Glenn; Pebbling in semi-2-trees; Elsevier Science; Discrete Mathematics; 340; 7; 7-2017; 1467-1480 0012-365X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/75234 |
identifier_str_mv |
Alcón, Liliana Graciela; Gutierrez, Marisa; Hulbert, Glenn; Pebbling in semi-2-trees; Elsevier Science; Discrete Mathematics; 340; 7; 7-2017; 1467-1480 0012-365X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.disc.2017.02.011 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0012365X17300481 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613111828447232 |
score |
13.070432 |