Pebbling in semi-2-trees

Autores
Alcón, Liliana Graciela; Gutierrez, Marisa; Hulbert, Glenn
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Graph pebbling is a network model for transporting discrete resources that are consumed in transit. Deciding whether a given configuration on a particular graph can reach a specified target is NP-complete, even for diameter two graphs, and deciding whether the pebbling number has a prescribed upper bound is Π2 P-complete. Recently we proved that the pebbling number of a split graph can be computed in polynomial time. This paper advances the program of finding other polynomial classes, moving away from the large tree width, small diameter case (such as split graphs) to small tree width, large diameter, continuing an investigation on the important subfamily of chordal graphs called k-trees. In particular, we provide a formula, that can be calculated in polynomial time, for the pebbling number of any semi-2-tree, falling shy of the result for the full class of 2-trees.
Fil: Alcón, Liliana Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Gutierrez, Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Hulbert, Glenn. Virginia Commonwealth University; Estados Unidos
Materia
Class 0
Complexity
K-Paths
K-Trees
Pebbling Number
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/75234

id CONICETDig_762169e20e8bbe49cd7fc04220fa8ca4
oai_identifier_str oai:ri.conicet.gov.ar:11336/75234
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Pebbling in semi-2-treesAlcón, Liliana GracielaGutierrez, MarisaHulbert, GlennClass 0ComplexityK-PathsK-TreesPebbling Numberhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Graph pebbling is a network model for transporting discrete resources that are consumed in transit. Deciding whether a given configuration on a particular graph can reach a specified target is NP-complete, even for diameter two graphs, and deciding whether the pebbling number has a prescribed upper bound is Π2 P-complete. Recently we proved that the pebbling number of a split graph can be computed in polynomial time. This paper advances the program of finding other polynomial classes, moving away from the large tree width, small diameter case (such as split graphs) to small tree width, large diameter, continuing an investigation on the important subfamily of chordal graphs called k-trees. In particular, we provide a formula, that can be calculated in polynomial time, for the pebbling number of any semi-2-tree, falling shy of the result for the full class of 2-trees.Fil: Alcón, Liliana Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: Gutierrez, Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: Hulbert, Glenn. Virginia Commonwealth University; Estados UnidosElsevier Science2017-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/75234Alcón, Liliana Graciela; Gutierrez, Marisa; Hulbert, Glenn; Pebbling in semi-2-trees; Elsevier Science; Discrete Mathematics; 340; 7; 7-2017; 1467-14800012-365XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.disc.2017.02.011info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0012365X17300481info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:38Zoai:ri.conicet.gov.ar:11336/75234instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:38.349CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Pebbling in semi-2-trees
title Pebbling in semi-2-trees
spellingShingle Pebbling in semi-2-trees
Alcón, Liliana Graciela
Class 0
Complexity
K-Paths
K-Trees
Pebbling Number
title_short Pebbling in semi-2-trees
title_full Pebbling in semi-2-trees
title_fullStr Pebbling in semi-2-trees
title_full_unstemmed Pebbling in semi-2-trees
title_sort Pebbling in semi-2-trees
dc.creator.none.fl_str_mv Alcón, Liliana Graciela
Gutierrez, Marisa
Hulbert, Glenn
author Alcón, Liliana Graciela
author_facet Alcón, Liliana Graciela
Gutierrez, Marisa
Hulbert, Glenn
author_role author
author2 Gutierrez, Marisa
Hulbert, Glenn
author2_role author
author
dc.subject.none.fl_str_mv Class 0
Complexity
K-Paths
K-Trees
Pebbling Number
topic Class 0
Complexity
K-Paths
K-Trees
Pebbling Number
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Graph pebbling is a network model for transporting discrete resources that are consumed in transit. Deciding whether a given configuration on a particular graph can reach a specified target is NP-complete, even for diameter two graphs, and deciding whether the pebbling number has a prescribed upper bound is Π2 P-complete. Recently we proved that the pebbling number of a split graph can be computed in polynomial time. This paper advances the program of finding other polynomial classes, moving away from the large tree width, small diameter case (such as split graphs) to small tree width, large diameter, continuing an investigation on the important subfamily of chordal graphs called k-trees. In particular, we provide a formula, that can be calculated in polynomial time, for the pebbling number of any semi-2-tree, falling shy of the result for the full class of 2-trees.
Fil: Alcón, Liliana Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Gutierrez, Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Hulbert, Glenn. Virginia Commonwealth University; Estados Unidos
description Graph pebbling is a network model for transporting discrete resources that are consumed in transit. Deciding whether a given configuration on a particular graph can reach a specified target is NP-complete, even for diameter two graphs, and deciding whether the pebbling number has a prescribed upper bound is Π2 P-complete. Recently we proved that the pebbling number of a split graph can be computed in polynomial time. This paper advances the program of finding other polynomial classes, moving away from the large tree width, small diameter case (such as split graphs) to small tree width, large diameter, continuing an investigation on the important subfamily of chordal graphs called k-trees. In particular, we provide a formula, that can be calculated in polynomial time, for the pebbling number of any semi-2-tree, falling shy of the result for the full class of 2-trees.
publishDate 2017
dc.date.none.fl_str_mv 2017-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/75234
Alcón, Liliana Graciela; Gutierrez, Marisa; Hulbert, Glenn; Pebbling in semi-2-trees; Elsevier Science; Discrete Mathematics; 340; 7; 7-2017; 1467-1480
0012-365X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/75234
identifier_str_mv Alcón, Liliana Graciela; Gutierrez, Marisa; Hulbert, Glenn; Pebbling in semi-2-trees; Elsevier Science; Discrete Mathematics; 340; 7; 7-2017; 1467-1480
0012-365X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.disc.2017.02.011
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0012365X17300481
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613111828447232
score 13.070432