Can quality-attribute requirements be identified from early aspects? : QAMiner: a preliminary approach to quality-attribute mining

Autores
Rago, Alejandro; Marcos, Claudia A.; Diaz-Pace, Andrés
Año de publicación
2011
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Specifying good software requirement documents is a difficult task. Many software projects fail because of the omission or bad encapsulation of concerns. A practical way to solve these problems is to use advanced separation of concern techniques, such as aspect-orientation. However, quality attributes are not completely addressed by them. In this work, we present a novel approach to uncover quality-attribute requirements. The identification is performed in an automated-fashion, relying on early asp ects to guide it and using ontologies to model domain knowledge. Our tool was evaluated on two well-known systems, and contrasted with architectural documents.
Sociedad Argentina de Informática e Investigación Operativa
Materia
Ciencias Informáticas
Quality attribute
Software requirement
Crosscutting concern
Early aspect
Use case specification
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/125496

id SEDICI_728e92ad69dc31dd968a1a9c031ad74f
oai_identifier_str oai:sedici.unlp.edu.ar:10915/125496
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Can quality-attribute requirements be identified from early aspects? : QAMiner: a preliminary approach to quality-attribute miningRago, AlejandroMarcos, Claudia A.Diaz-Pace, AndrésCiencias InformáticasQuality attributeSoftware requirementCrosscutting concernEarly aspectUse case specificationSpecifying good software requirement documents is a difficult task. Many software projects fail because of the omission or bad encapsulation of concerns. A practical way to solve these problems is to use advanced separation of concern techniques, such as aspect-orientation. However, quality attributes are not completely addressed by them. In this work, we present a novel approach to uncover quality-attribute requirements. The identification is performed in an automated-fashion, relying on early asp ects to guide it and using ontologies to model domain knowledge. Our tool was evaluated on two well-known systems, and contrasted with architectural documents.Sociedad Argentina de Informática e Investigación Operativa2011-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf192-203http://sedici.unlp.edu.ar/handle/10915/125496enginfo:eu-repo/semantics/altIdentifier/url/https://40jaiio.sadio.org.ar/sites/default/files/T2011/ASSE/793.pdfinfo:eu-repo/semantics/altIdentifier/issn/1850-2792info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:02:14Zoai:sedici.unlp.edu.ar:10915/125496Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:02:14.982SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Can quality-attribute requirements be identified from early aspects? : QAMiner: a preliminary approach to quality-attribute mining
title Can quality-attribute requirements be identified from early aspects? : QAMiner: a preliminary approach to quality-attribute mining
spellingShingle Can quality-attribute requirements be identified from early aspects? : QAMiner: a preliminary approach to quality-attribute mining
Rago, Alejandro
Ciencias Informáticas
Quality attribute
Software requirement
Crosscutting concern
Early aspect
Use case specification
title_short Can quality-attribute requirements be identified from early aspects? : QAMiner: a preliminary approach to quality-attribute mining
title_full Can quality-attribute requirements be identified from early aspects? : QAMiner: a preliminary approach to quality-attribute mining
title_fullStr Can quality-attribute requirements be identified from early aspects? : QAMiner: a preliminary approach to quality-attribute mining
title_full_unstemmed Can quality-attribute requirements be identified from early aspects? : QAMiner: a preliminary approach to quality-attribute mining
title_sort Can quality-attribute requirements be identified from early aspects? : QAMiner: a preliminary approach to quality-attribute mining
dc.creator.none.fl_str_mv Rago, Alejandro
Marcos, Claudia A.
Diaz-Pace, Andrés
author Rago, Alejandro
author_facet Rago, Alejandro
Marcos, Claudia A.
Diaz-Pace, Andrés
author_role author
author2 Marcos, Claudia A.
Diaz-Pace, Andrés
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Quality attribute
Software requirement
Crosscutting concern
Early aspect
Use case specification
topic Ciencias Informáticas
Quality attribute
Software requirement
Crosscutting concern
Early aspect
Use case specification
dc.description.none.fl_txt_mv Specifying good software requirement documents is a difficult task. Many software projects fail because of the omission or bad encapsulation of concerns. A practical way to solve these problems is to use advanced separation of concern techniques, such as aspect-orientation. However, quality attributes are not completely addressed by them. In this work, we present a novel approach to uncover quality-attribute requirements. The identification is performed in an automated-fashion, relying on early asp ects to guide it and using ontologies to model domain knowledge. Our tool was evaluated on two well-known systems, and contrasted with architectural documents.
Sociedad Argentina de Informática e Investigación Operativa
description Specifying good software requirement documents is a difficult task. Many software projects fail because of the omission or bad encapsulation of concerns. A practical way to solve these problems is to use advanced separation of concern techniques, such as aspect-orientation. However, quality attributes are not completely addressed by them. In this work, we present a novel approach to uncover quality-attribute requirements. The identification is performed in an automated-fashion, relying on early asp ects to guide it and using ontologies to model domain knowledge. Our tool was evaluated on two well-known systems, and contrasted with architectural documents.
publishDate 2011
dc.date.none.fl_str_mv 2011-09
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/125496
url http://sedici.unlp.edu.ar/handle/10915/125496
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://40jaiio.sadio.org.ar/sites/default/files/T2011/ASSE/793.pdf
info:eu-repo/semantics/altIdentifier/issn/1850-2792
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
192-203
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260520711749632
score 13.13397