Venoarterial PCO<sub>2</sub>-to-arteriovenous oxygen content difference ratio is a poor surrogate for anaerobic metabolism in hemodilution: an experimental study

Autores
Dubin, Arnaldo; Ferrara, Gonzalo; Kanoore Edul, Vanina Siham; Martins, Enrique Francisco; Canales, Héctor Saúl; Canullán, Carlos; Murias, Gastón; Pozo, Mario Omar; Estenssoro, Elisa
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Background: The identification of anaerobic metabolism in critically ill patients is a challenging task. Observational studies have suggested that the ratio of venoarterial PCO2 (Pv–aCO2) to arteriovenous oxygen content difference (Ca–vO2) might be a good surrogate for respiratory quotient (RQ). Yet Pv–aCO2/Ca–vO2 might be increased by other factors, regardless of anaerobic metabolism. At present, comparisons between Pv–aCO2/Ca–vO2 and RQ have not been performed. We sought to compare these variables during stepwise hemorrhage and hemodilution. Since anemia predictably produces augmented Pv–aCO2 and decreased Ca–vO2, our hypothesis was that Pv–aCO2/Ca–vO2 might be an inadequate surrogate for RQ. Methods: This is a subanalysis of a previously published study. In anesthetized and mechanically ventilated sheep (n = 16), we compared the effects of progressive hemodilution and hemorrhage by means of expired gases analysis. Results: There were comparable reductions in oxygen consumption and increases in RQ in the last step of hemodilution and hemorrhage. The increase in Pv–aCO2/Ca–vO2 was higher in hemodilution than in hemorrhage (1.9 ± 0.2 to 10.0 ± 0.9 vs. 1.7 ± 0.2 to 2.5 ± 0.1, P < 0.0001). The increase in Pv–aCO2 was lower in hemodilution (6 ± 0 to 10 ± 1 vs. 6 ± 0 to 17 ± 1 mmHg, P < 0.0001). Venoarterial CO2 content difference and Ca–vO2 decreased in hemodilution and increased in hemorrhage (2.6 ± 0.3 to 1.2 ± 0.1 vs. 2.8 ± 0.2 to 6.9 ± 0.5, and 3.4 ± 0.3 to 1.0 ± 0.3 vs. 3.6 ± 0.3 to 6.8 ± 0.3 mL/dL, P < 0.0001 for both). In hemodilution, Pv–aCO2/Ca–vO2 increased before the fall in oxygen consumption and the increase in RQ. Pv–aCO2/Ca–vO2 was strongly correlated with Hb (R2 = 0.79, P < 0.00001) and moderately with RQ (R2 = 0.41, P < 0.0001). A multiple linear regression model found Hb, RQ, base excess, and mixed venous oxygen saturation and PCO2 as Pv–aCO2/Ca–vO2 determinants (adjusted R2 = 0.86, P < 0.000001). Conclusions: In hemodilution, Pv–aCO2/Ca–vO2 was considerably increased, irrespective of the presence of anaerobic metabolism. Pv–aCO2/Ca–vO2 is a complex variable, which depends on several factors. As such, it was a misleading indicator of anaerobic metabolism in hemodilution.
Facultad de Ciencias Médicas
Materia
Ciencias Médicas
Anaerobic metabolism
Carbon dioxide
Hemodilution
Hemorrhage
Oxygen
Respiratory quotient
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/87128

id SEDICI_7154e2eddee136148b610f7cdfcb57b4
oai_identifier_str oai:sedici.unlp.edu.ar:10915/87128
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Venoarterial PCO<sub>2</sub>-to-arteriovenous oxygen content difference ratio is a poor surrogate for anaerobic metabolism in hemodilution: an experimental studyDubin, ArnaldoFerrara, GonzaloKanoore Edul, Vanina SihamMartins, Enrique FranciscoCanales, Héctor SaúlCanullán, CarlosMurias, GastónPozo, Mario OmarEstenssoro, ElisaCiencias MédicasAnaerobic metabolismCarbon dioxideHemodilutionHemorrhageOxygenRespiratory quotientBackground: The identification of anaerobic metabolism in critically ill patients is a challenging task. Observational studies have suggested that the ratio of venoarterial PCO2 (Pv–aCO2) to arteriovenous oxygen content difference (Ca–vO2) might be a good surrogate for respiratory quotient (RQ). Yet Pv–aCO2/Ca–vO2 might be increased by other factors, regardless of anaerobic metabolism. At present, comparisons between Pv–aCO2/Ca–vO2 and RQ have not been performed. We sought to compare these variables during stepwise hemorrhage and hemodilution. Since anemia predictably produces augmented Pv–aCO2 and decreased Ca–vO2, our hypothesis was that Pv–aCO2/Ca–vO2 might be an inadequate surrogate for RQ. Methods: This is a subanalysis of a previously published study. In anesthetized and mechanically ventilated sheep (n = 16), we compared the effects of progressive hemodilution and hemorrhage by means of expired gases analysis. Results: There were comparable reductions in oxygen consumption and increases in RQ in the last step of hemodilution and hemorrhage. The increase in Pv–aCO2/Ca–vO2 was higher in hemodilution than in hemorrhage (1.9 ± 0.2 to 10.0 ± 0.9 vs. 1.7 ± 0.2 to 2.5 ± 0.1, P < 0.0001). The increase in Pv–aCO2 was lower in hemodilution (6 ± 0 to 10 ± 1 vs. 6 ± 0 to 17 ± 1 mmHg, P < 0.0001). Venoarterial CO2 content difference and Ca–vO2 decreased in hemodilution and increased in hemorrhage (2.6 ± 0.3 to 1.2 ± 0.1 vs. 2.8 ± 0.2 to 6.9 ± 0.5, and 3.4 ± 0.3 to 1.0 ± 0.3 vs. 3.6 ± 0.3 to 6.8 ± 0.3 mL/dL, P < 0.0001 for both). In hemodilution, Pv–aCO2/Ca–vO2 increased before the fall in oxygen consumption and the increase in RQ. Pv–aCO2/Ca–vO2 was strongly correlated with Hb (R2 = 0.79, P < 0.00001) and moderately with RQ (R2 = 0.41, P < 0.0001). A multiple linear regression model found Hb, RQ, base excess, and mixed venous oxygen saturation and PCO2 as Pv–aCO2/Ca–vO2 determinants (adjusted R2 = 0.86, P < 0.000001). Conclusions: In hemodilution, Pv–aCO2/Ca–vO2 was considerably increased, irrespective of the presence of anaerobic metabolism. Pv–aCO2/Ca–vO2 is a complex variable, which depends on several factors. As such, it was a misleading indicator of anaerobic metabolism in hemodilution.Facultad de Ciencias Médicas2017info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/87128enginfo:eu-repo/semantics/altIdentifier/issn/2110-5820info:eu-repo/semantics/altIdentifier/doi/10.1186/s13613-017-0288-zinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:09:02Zoai:sedici.unlp.edu.ar:10915/87128Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:09:03.068SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Venoarterial PCO<sub>2</sub>-to-arteriovenous oxygen content difference ratio is a poor surrogate for anaerobic metabolism in hemodilution: an experimental study
title Venoarterial PCO<sub>2</sub>-to-arteriovenous oxygen content difference ratio is a poor surrogate for anaerobic metabolism in hemodilution: an experimental study
spellingShingle Venoarterial PCO<sub>2</sub>-to-arteriovenous oxygen content difference ratio is a poor surrogate for anaerobic metabolism in hemodilution: an experimental study
Dubin, Arnaldo
Ciencias Médicas
Anaerobic metabolism
Carbon dioxide
Hemodilution
Hemorrhage
Oxygen
Respiratory quotient
title_short Venoarterial PCO<sub>2</sub>-to-arteriovenous oxygen content difference ratio is a poor surrogate for anaerobic metabolism in hemodilution: an experimental study
title_full Venoarterial PCO<sub>2</sub>-to-arteriovenous oxygen content difference ratio is a poor surrogate for anaerobic metabolism in hemodilution: an experimental study
title_fullStr Venoarterial PCO<sub>2</sub>-to-arteriovenous oxygen content difference ratio is a poor surrogate for anaerobic metabolism in hemodilution: an experimental study
title_full_unstemmed Venoarterial PCO<sub>2</sub>-to-arteriovenous oxygen content difference ratio is a poor surrogate for anaerobic metabolism in hemodilution: an experimental study
title_sort Venoarterial PCO<sub>2</sub>-to-arteriovenous oxygen content difference ratio is a poor surrogate for anaerobic metabolism in hemodilution: an experimental study
dc.creator.none.fl_str_mv Dubin, Arnaldo
Ferrara, Gonzalo
Kanoore Edul, Vanina Siham
Martins, Enrique Francisco
Canales, Héctor Saúl
Canullán, Carlos
Murias, Gastón
Pozo, Mario Omar
Estenssoro, Elisa
author Dubin, Arnaldo
author_facet Dubin, Arnaldo
Ferrara, Gonzalo
Kanoore Edul, Vanina Siham
Martins, Enrique Francisco
Canales, Héctor Saúl
Canullán, Carlos
Murias, Gastón
Pozo, Mario Omar
Estenssoro, Elisa
author_role author
author2 Ferrara, Gonzalo
Kanoore Edul, Vanina Siham
Martins, Enrique Francisco
Canales, Héctor Saúl
Canullán, Carlos
Murias, Gastón
Pozo, Mario Omar
Estenssoro, Elisa
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Ciencias Médicas
Anaerobic metabolism
Carbon dioxide
Hemodilution
Hemorrhage
Oxygen
Respiratory quotient
topic Ciencias Médicas
Anaerobic metabolism
Carbon dioxide
Hemodilution
Hemorrhage
Oxygen
Respiratory quotient
dc.description.none.fl_txt_mv Background: The identification of anaerobic metabolism in critically ill patients is a challenging task. Observational studies have suggested that the ratio of venoarterial PCO2 (Pv–aCO2) to arteriovenous oxygen content difference (Ca–vO2) might be a good surrogate for respiratory quotient (RQ). Yet Pv–aCO2/Ca–vO2 might be increased by other factors, regardless of anaerobic metabolism. At present, comparisons between Pv–aCO2/Ca–vO2 and RQ have not been performed. We sought to compare these variables during stepwise hemorrhage and hemodilution. Since anemia predictably produces augmented Pv–aCO2 and decreased Ca–vO2, our hypothesis was that Pv–aCO2/Ca–vO2 might be an inadequate surrogate for RQ. Methods: This is a subanalysis of a previously published study. In anesthetized and mechanically ventilated sheep (n = 16), we compared the effects of progressive hemodilution and hemorrhage by means of expired gases analysis. Results: There were comparable reductions in oxygen consumption and increases in RQ in the last step of hemodilution and hemorrhage. The increase in Pv–aCO2/Ca–vO2 was higher in hemodilution than in hemorrhage (1.9 ± 0.2 to 10.0 ± 0.9 vs. 1.7 ± 0.2 to 2.5 ± 0.1, P < 0.0001). The increase in Pv–aCO2 was lower in hemodilution (6 ± 0 to 10 ± 1 vs. 6 ± 0 to 17 ± 1 mmHg, P < 0.0001). Venoarterial CO2 content difference and Ca–vO2 decreased in hemodilution and increased in hemorrhage (2.6 ± 0.3 to 1.2 ± 0.1 vs. 2.8 ± 0.2 to 6.9 ± 0.5, and 3.4 ± 0.3 to 1.0 ± 0.3 vs. 3.6 ± 0.3 to 6.8 ± 0.3 mL/dL, P < 0.0001 for both). In hemodilution, Pv–aCO2/Ca–vO2 increased before the fall in oxygen consumption and the increase in RQ. Pv–aCO2/Ca–vO2 was strongly correlated with Hb (R2 = 0.79, P < 0.00001) and moderately with RQ (R2 = 0.41, P < 0.0001). A multiple linear regression model found Hb, RQ, base excess, and mixed venous oxygen saturation and PCO2 as Pv–aCO2/Ca–vO2 determinants (adjusted R2 = 0.86, P < 0.000001). Conclusions: In hemodilution, Pv–aCO2/Ca–vO2 was considerably increased, irrespective of the presence of anaerobic metabolism. Pv–aCO2/Ca–vO2 is a complex variable, which depends on several factors. As such, it was a misleading indicator of anaerobic metabolism in hemodilution.
Facultad de Ciencias Médicas
description Background: The identification of anaerobic metabolism in critically ill patients is a challenging task. Observational studies have suggested that the ratio of venoarterial PCO2 (Pv–aCO2) to arteriovenous oxygen content difference (Ca–vO2) might be a good surrogate for respiratory quotient (RQ). Yet Pv–aCO2/Ca–vO2 might be increased by other factors, regardless of anaerobic metabolism. At present, comparisons between Pv–aCO2/Ca–vO2 and RQ have not been performed. We sought to compare these variables during stepwise hemorrhage and hemodilution. Since anemia predictably produces augmented Pv–aCO2 and decreased Ca–vO2, our hypothesis was that Pv–aCO2/Ca–vO2 might be an inadequate surrogate for RQ. Methods: This is a subanalysis of a previously published study. In anesthetized and mechanically ventilated sheep (n = 16), we compared the effects of progressive hemodilution and hemorrhage by means of expired gases analysis. Results: There were comparable reductions in oxygen consumption and increases in RQ in the last step of hemodilution and hemorrhage. The increase in Pv–aCO2/Ca–vO2 was higher in hemodilution than in hemorrhage (1.9 ± 0.2 to 10.0 ± 0.9 vs. 1.7 ± 0.2 to 2.5 ± 0.1, P < 0.0001). The increase in Pv–aCO2 was lower in hemodilution (6 ± 0 to 10 ± 1 vs. 6 ± 0 to 17 ± 1 mmHg, P < 0.0001). Venoarterial CO2 content difference and Ca–vO2 decreased in hemodilution and increased in hemorrhage (2.6 ± 0.3 to 1.2 ± 0.1 vs. 2.8 ± 0.2 to 6.9 ± 0.5, and 3.4 ± 0.3 to 1.0 ± 0.3 vs. 3.6 ± 0.3 to 6.8 ± 0.3 mL/dL, P < 0.0001 for both). In hemodilution, Pv–aCO2/Ca–vO2 increased before the fall in oxygen consumption and the increase in RQ. Pv–aCO2/Ca–vO2 was strongly correlated with Hb (R2 = 0.79, P < 0.00001) and moderately with RQ (R2 = 0.41, P < 0.0001). A multiple linear regression model found Hb, RQ, base excess, and mixed venous oxygen saturation and PCO2 as Pv–aCO2/Ca–vO2 determinants (adjusted R2 = 0.86, P < 0.000001). Conclusions: In hemodilution, Pv–aCO2/Ca–vO2 was considerably increased, irrespective of the presence of anaerobic metabolism. Pv–aCO2/Ca–vO2 is a complex variable, which depends on several factors. As such, it was a misleading indicator of anaerobic metabolism in hemodilution.
publishDate 2017
dc.date.none.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/87128
url http://sedici.unlp.edu.ar/handle/10915/87128
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/2110-5820
info:eu-repo/semantics/altIdentifier/doi/10.1186/s13613-017-0288-z
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064147427491840
score 13.22299