An analysis of the computational complexity of DeLP through game semantics

Autores
Cecchi, Laura; Fillottrani, Pablo Rubén; Simari, Guillermo Ricardo
Año de publicación
2005
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Defeasible Logic Programming (DeLP) is a suitable tool for knowledge representation and reasoning. Its operational semantics is based on a dialectical analysis where arguments for and against a literal interact in order to determine whether this literal is believed by a reasoning agent. The semantics GS is a declarative trivalued game-based semantics for DeLP that is sound and complete for DeLP operational semantics. Complexity theory has become an important tool for comparing different formalism and for helping to improve implementations whenever is possible. For these reasons, it is important to investigate the computational complexity and expressive power of DeLP. In this paper we present a complexity analysis of DeLP through game-semantics GS. In particular, we have determined that computing rigorous consequences is P-complete and that the decision problem “a set of defeasible rules is an argument for a literal under a de.l.p.” is in P.
VI Workshop de Agentes y Sistemas Inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Logic Programming
Semantics
Games
argumentative systems
defeasible reasoning
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/23000

id SEDICI_7148559e99098890e0ba7af0954d2074
oai_identifier_str oai:sedici.unlp.edu.ar:10915/23000
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling An analysis of the computational complexity of DeLP through game semanticsCecchi, LauraFillottrani, Pablo RubénSimari, Guillermo RicardoCiencias InformáticasLogic ProgrammingSemanticsGamesargumentative systemsdefeasible reasoningDefeasible Logic Programming (DeLP) is a suitable tool for knowledge representation and reasoning. Its operational semantics is based on a dialectical analysis where arguments for and against a literal interact in order to determine whether this literal is believed by a reasoning agent. The semantics GS is a declarative trivalued game-based semantics for DeLP that is sound and complete for DeLP operational semantics. Complexity theory has become an important tool for comparing different formalism and for helping to improve implementations whenever is possible. For these reasons, it is important to investigate the computational complexity and expressive power of DeLP. In this paper we present a complexity analysis of DeLP through game-semantics GS. In particular, we have determined that computing rigorous consequences is P-complete and that the decision problem “a set of defeasible rules is an argument for a literal under a de.l.p.” is in P.VI Workshop de Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI)2005-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23000enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:28:07Zoai:sedici.unlp.edu.ar:10915/23000Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:28:07.245SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv An analysis of the computational complexity of DeLP through game semantics
title An analysis of the computational complexity of DeLP through game semantics
spellingShingle An analysis of the computational complexity of DeLP through game semantics
Cecchi, Laura
Ciencias Informáticas
Logic Programming
Semantics
Games
argumentative systems
defeasible reasoning
title_short An analysis of the computational complexity of DeLP through game semantics
title_full An analysis of the computational complexity of DeLP through game semantics
title_fullStr An analysis of the computational complexity of DeLP through game semantics
title_full_unstemmed An analysis of the computational complexity of DeLP through game semantics
title_sort An analysis of the computational complexity of DeLP through game semantics
dc.creator.none.fl_str_mv Cecchi, Laura
Fillottrani, Pablo Rubén
Simari, Guillermo Ricardo
author Cecchi, Laura
author_facet Cecchi, Laura
Fillottrani, Pablo Rubén
Simari, Guillermo Ricardo
author_role author
author2 Fillottrani, Pablo Rubén
Simari, Guillermo Ricardo
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Logic Programming
Semantics
Games
argumentative systems
defeasible reasoning
topic Ciencias Informáticas
Logic Programming
Semantics
Games
argumentative systems
defeasible reasoning
dc.description.none.fl_txt_mv Defeasible Logic Programming (DeLP) is a suitable tool for knowledge representation and reasoning. Its operational semantics is based on a dialectical analysis where arguments for and against a literal interact in order to determine whether this literal is believed by a reasoning agent. The semantics GS is a declarative trivalued game-based semantics for DeLP that is sound and complete for DeLP operational semantics. Complexity theory has become an important tool for comparing different formalism and for helping to improve implementations whenever is possible. For these reasons, it is important to investigate the computational complexity and expressive power of DeLP. In this paper we present a complexity analysis of DeLP through game-semantics GS. In particular, we have determined that computing rigorous consequences is P-complete and that the decision problem “a set of defeasible rules is an argument for a literal under a de.l.p.” is in P.
VI Workshop de Agentes y Sistemas Inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI)
description Defeasible Logic Programming (DeLP) is a suitable tool for knowledge representation and reasoning. Its operational semantics is based on a dialectical analysis where arguments for and against a literal interact in order to determine whether this literal is believed by a reasoning agent. The semantics GS is a declarative trivalued game-based semantics for DeLP that is sound and complete for DeLP operational semantics. Complexity theory has become an important tool for comparing different formalism and for helping to improve implementations whenever is possible. For these reasons, it is important to investigate the computational complexity and expressive power of DeLP. In this paper we present a complexity analysis of DeLP through game-semantics GS. In particular, we have determined that computing rigorous consequences is P-complete and that the decision problem “a set of defeasible rules is an argument for a literal under a de.l.p.” is in P.
publishDate 2005
dc.date.none.fl_str_mv 2005-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/23000
url http://sedici.unlp.edu.ar/handle/10915/23000
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260119310565376
score 13.13397