DER: Dynamic Evidential Reasoning applied to hyperspectral images classification
- Autores
- Sanz, Cecilia Verónica; Jordán, Ramiro
- Año de publicación
- 2002
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper describes a new classification method (DER) based on evidential reasoning to which a series of modifications are added [1]. DER allows including new evidence for the classification process and defines a different decision rule. The evidential reasoning algorithm provides a means to combine evidence from different data sources. It is a supervised classification technique that uses a training samples set. This novel method (DER) offers a learning stage to introduce new evidence in case the classifier requires so. Moreover, it uses the plausibility measure in order to define the decision rule as a way to incorporate data-associated uncertainty. The proposed method is applied in order to classify crops in hyperspectral images of the area of Nebraska (USA). Some results obtained are presented in order to assess DER precision.
Facultad de Informática - Materia
-
Ciencias Informáticas
Image processing software - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/9430
Ver los metadatos del registro completo
id |
SEDICI_6d65b44f87d4a731588d2e7be1094670 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/9430 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
DER: Dynamic Evidential Reasoning applied to hyperspectral images classificationSanz, Cecilia VerónicaJordán, RamiroCiencias InformáticasImage processing softwareThis paper describes a new classification method (DER) based on evidential reasoning to which a series of modifications are added [1]. DER allows including new evidence for the classification process and defines a different decision rule. The evidential reasoning algorithm provides a means to combine evidence from different data sources. It is a supervised classification technique that uses a training samples set. This novel method (DER) offers a learning stage to introduce new evidence in case the classifier requires so. Moreover, it uses the plausibility measure in order to define the decision rule as a way to incorporate data-associated uncertainty. The proposed method is applied in order to classify crops in hyperspectral images of the area of Nebraska (USA). Some results obtained are presented in order to assess DER precision.Facultad de Informática2002info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/9430enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/p21.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/3.0/Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T10:43:16Zoai:sedici.unlp.edu.ar:10915/9430Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 10:43:16.979SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
DER: Dynamic Evidential Reasoning applied to hyperspectral images classification |
title |
DER: Dynamic Evidential Reasoning applied to hyperspectral images classification |
spellingShingle |
DER: Dynamic Evidential Reasoning applied to hyperspectral images classification Sanz, Cecilia Verónica Ciencias Informáticas Image processing software |
title_short |
DER: Dynamic Evidential Reasoning applied to hyperspectral images classification |
title_full |
DER: Dynamic Evidential Reasoning applied to hyperspectral images classification |
title_fullStr |
DER: Dynamic Evidential Reasoning applied to hyperspectral images classification |
title_full_unstemmed |
DER: Dynamic Evidential Reasoning applied to hyperspectral images classification |
title_sort |
DER: Dynamic Evidential Reasoning applied to hyperspectral images classification |
dc.creator.none.fl_str_mv |
Sanz, Cecilia Verónica Jordán, Ramiro |
author |
Sanz, Cecilia Verónica |
author_facet |
Sanz, Cecilia Verónica Jordán, Ramiro |
author_role |
author |
author2 |
Jordán, Ramiro |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Image processing software |
topic |
Ciencias Informáticas Image processing software |
dc.description.none.fl_txt_mv |
This paper describes a new classification method (DER) based on evidential reasoning to which a series of modifications are added [1]. DER allows including new evidence for the classification process and defines a different decision rule. The evidential reasoning algorithm provides a means to combine evidence from different data sources. It is a supervised classification technique that uses a training samples set. This novel method (DER) offers a learning stage to introduce new evidence in case the classifier requires so. Moreover, it uses the plausibility measure in order to define the decision rule as a way to incorporate data-associated uncertainty. The proposed method is applied in order to classify crops in hyperspectral images of the area of Nebraska (USA). Some results obtained are presented in order to assess DER precision. Facultad de Informática |
description |
This paper describes a new classification method (DER) based on evidential reasoning to which a series of modifications are added [1]. DER allows including new evidence for the classification process and defines a different decision rule. The evidential reasoning algorithm provides a means to combine evidence from different data sources. It is a supervised classification technique that uses a training samples set. This novel method (DER) offers a learning stage to introduce new evidence in case the classifier requires so. Moreover, it uses the plausibility measure in order to define the decision rule as a way to incorporate data-associated uncertainty. The proposed method is applied in order to classify crops in hyperspectral images of the area of Nebraska (USA). Some results obtained are presented in order to assess DER precision. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/9430 |
url |
http://sedici.unlp.edu.ar/handle/10915/9430 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/p21.pdf info:eu-repo/semantics/altIdentifier/issn/1666-6038 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846063847362789376 |
score |
13.22299 |