Técnicas evolutivas para la extracción automática de conocimiento
- Autores
- Baggio, Cecilia; Cecchini, Rocío L.; Maguitman, Ana Gabriela
- Año de publicación
- 2015
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Esta línea de investigación propone el diseño, desarrollo y evaluación de técnicas automáticas para extracción de conocimiento, de tal forma que sean capaces de sobrellevar la búsqueda dentro de grandes espacios de información. Para ello se propone, en primera instancia, la resolución de un problema de interés general: el de reformulación automática de consultas. Una resolución automática para este problema podría ser utilizada en diversas aplicaciones, tales como monitorear un tópico de interés, especificar trackers temáticos sobre redes sociales, identificar entidades y relaciones entre entidades en grandes corpus de documentos o recolectar material para portales temáticos. Por sus características (alta dimensionalidad del espacio de búsqueda, carencia de subestructura optima, posibilidad de aprovechamiento de múltiples soluciones) el uso de computación evolutiva parece adecuado para abordar su resolución. Un primer aporte de esta línea dentro del área radica en la consideración de la in- corporación de operadores booleanos y otro tipo de modificadores a las consultas reformuladas y el control de la diversidad, ambos pensados como un mecanismo para lograr mayor expresión en las consultas y, por lo tanto, mayor poder para expresar los conceptos de interés involucrados. El segundo aporte consiste en proponer un marco de evaluación adecuado para la metodología desarrollada y el estudio y comparación con otras técnicas. Por último, el aporte final aborda la aplicación de los métodos desarrollados en dominios específicos tales como bioinformática (e.g. para identificación de interacciones entre entidades biológicas) o redes sociales (e.g. para realizar minería de opiniones mediante trackers temáticos).
Eje: Agentes y Sistemas Inteligentes
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
extracción de conocimiento
Data mining
computación evolutiva - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/45464
Ver los metadatos del registro completo
| id |
SEDICI_6980968137d427af72b279c315b69ea5 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/45464 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Técnicas evolutivas para la extracción automática de conocimientoBaggio, CeciliaCecchini, Rocío L.Maguitman, Ana GabrielaCiencias Informáticasextracción de conocimientoData miningcomputación evolutivaEsta línea de investigación propone el diseño, desarrollo y evaluación de técnicas automáticas para extracción de conocimiento, de tal forma que sean capaces de sobrellevar la búsqueda dentro de grandes espacios de información. Para ello se propone, en primera instancia, la resolución de un problema de interés general: el de reformulación automática de consultas. Una resolución automática para este problema podría ser utilizada en diversas aplicaciones, tales como monitorear un tópico de interés, especificar trackers temáticos sobre redes sociales, identificar entidades y relaciones entre entidades en grandes corpus de documentos o recolectar material para portales temáticos. Por sus características (alta dimensionalidad del espacio de búsqueda, carencia de subestructura optima, posibilidad de aprovechamiento de múltiples soluciones) el uso de computación evolutiva parece adecuado para abordar su resolución. Un primer aporte de esta línea dentro del área radica en la consideración de la in- corporación de operadores booleanos y otro tipo de modificadores a las consultas reformuladas y el control de la diversidad, ambos pensados como un mecanismo para lograr mayor expresión en las consultas y, por lo tanto, mayor poder para expresar los conceptos de interés involucrados. El segundo aporte consiste en proponer un marco de evaluación adecuado para la metodología desarrollada y el estudio y comparación con otras técnicas. Por último, el aporte final aborda la aplicación de los métodos desarrollados en dominios específicos tales como bioinformática (e.g. para identificación de interacciones entre entidades biológicas) o redes sociales (e.g. para realizar minería de opiniones mediante trackers temáticos).Eje: Agentes y Sistemas InteligentesRed de Universidades con Carreras en Informática (RedUNCI)2015-04info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/45464spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:43:53Zoai:sedici.unlp.edu.ar:10915/45464Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:43:53.524SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Técnicas evolutivas para la extracción automática de conocimiento |
| title |
Técnicas evolutivas para la extracción automática de conocimiento |
| spellingShingle |
Técnicas evolutivas para la extracción automática de conocimiento Baggio, Cecilia Ciencias Informáticas extracción de conocimiento Data mining computación evolutiva |
| title_short |
Técnicas evolutivas para la extracción automática de conocimiento |
| title_full |
Técnicas evolutivas para la extracción automática de conocimiento |
| title_fullStr |
Técnicas evolutivas para la extracción automática de conocimiento |
| title_full_unstemmed |
Técnicas evolutivas para la extracción automática de conocimiento |
| title_sort |
Técnicas evolutivas para la extracción automática de conocimiento |
| dc.creator.none.fl_str_mv |
Baggio, Cecilia Cecchini, Rocío L. Maguitman, Ana Gabriela |
| author |
Baggio, Cecilia |
| author_facet |
Baggio, Cecilia Cecchini, Rocío L. Maguitman, Ana Gabriela |
| author_role |
author |
| author2 |
Cecchini, Rocío L. Maguitman, Ana Gabriela |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas extracción de conocimiento Data mining computación evolutiva |
| topic |
Ciencias Informáticas extracción de conocimiento Data mining computación evolutiva |
| dc.description.none.fl_txt_mv |
Esta línea de investigación propone el diseño, desarrollo y evaluación de técnicas automáticas para extracción de conocimiento, de tal forma que sean capaces de sobrellevar la búsqueda dentro de grandes espacios de información. Para ello se propone, en primera instancia, la resolución de un problema de interés general: el de reformulación automática de consultas. Una resolución automática para este problema podría ser utilizada en diversas aplicaciones, tales como monitorear un tópico de interés, especificar trackers temáticos sobre redes sociales, identificar entidades y relaciones entre entidades en grandes corpus de documentos o recolectar material para portales temáticos. Por sus características (alta dimensionalidad del espacio de búsqueda, carencia de subestructura optima, posibilidad de aprovechamiento de múltiples soluciones) el uso de computación evolutiva parece adecuado para abordar su resolución. Un primer aporte de esta línea dentro del área radica en la consideración de la in- corporación de operadores booleanos y otro tipo de modificadores a las consultas reformuladas y el control de la diversidad, ambos pensados como un mecanismo para lograr mayor expresión en las consultas y, por lo tanto, mayor poder para expresar los conceptos de interés involucrados. El segundo aporte consiste en proponer un marco de evaluación adecuado para la metodología desarrollada y el estudio y comparación con otras técnicas. Por último, el aporte final aborda la aplicación de los métodos desarrollados en dominios específicos tales como bioinformática (e.g. para identificación de interacciones entre entidades biológicas) o redes sociales (e.g. para realizar minería de opiniones mediante trackers temáticos). Eje: Agentes y Sistemas Inteligentes Red de Universidades con Carreras en Informática (RedUNCI) |
| description |
Esta línea de investigación propone el diseño, desarrollo y evaluación de técnicas automáticas para extracción de conocimiento, de tal forma que sean capaces de sobrellevar la búsqueda dentro de grandes espacios de información. Para ello se propone, en primera instancia, la resolución de un problema de interés general: el de reformulación automática de consultas. Una resolución automática para este problema podría ser utilizada en diversas aplicaciones, tales como monitorear un tópico de interés, especificar trackers temáticos sobre redes sociales, identificar entidades y relaciones entre entidades en grandes corpus de documentos o recolectar material para portales temáticos. Por sus características (alta dimensionalidad del espacio de búsqueda, carencia de subestructura optima, posibilidad de aprovechamiento de múltiples soluciones) el uso de computación evolutiva parece adecuado para abordar su resolución. Un primer aporte de esta línea dentro del área radica en la consideración de la in- corporación de operadores booleanos y otro tipo de modificadores a las consultas reformuladas y el control de la diversidad, ambos pensados como un mecanismo para lograr mayor expresión en las consultas y, por lo tanto, mayor poder para expresar los conceptos de interés involucrados. El segundo aporte consiste en proponer un marco de evaluación adecuado para la metodología desarrollada y el estudio y comparación con otras técnicas. Por último, el aporte final aborda la aplicación de los métodos desarrollados en dominios específicos tales como bioinformática (e.g. para identificación de interacciones entre entidades biológicas) o redes sociales (e.g. para realizar minería de opiniones mediante trackers temáticos). |
| publishDate |
2015 |
| dc.date.none.fl_str_mv |
2015-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/45464 |
| url |
http://sedici.unlp.edu.ar/handle/10915/45464 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846782944382812160 |
| score |
12.982451 |