Técnicas evolutivas para la extracción automática de conocimiento

Autores
Baggio, Cecilia; Cecchini, Rocío L.; Maguitman, Ana Gabriela
Año de publicación
2015
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Esta línea de investigación propone el diseño, desarrollo y evaluación de técnicas automáticas para extracción de conocimiento, de tal forma que sean capaces de sobrellevar la búsqueda dentro de grandes espacios de información. Para ello se propone, en primera instancia, la resolución de un problema de interés general: el de reformulación automática de consultas. Una resolución automática para este problema podría ser utilizada en diversas aplicaciones, tales como monitorear un tópico de interés, especificar trackers temáticos sobre redes sociales, identificar entidades y relaciones entre entidades en grandes corpus de documentos o recolectar material para portales temáticos. Por sus características (alta dimensionalidad del espacio de búsqueda, carencia de subestructura optima, posibilidad de aprovechamiento de múltiples soluciones) el uso de computación evolutiva parece adecuado para abordar su resolución. Un primer aporte de esta línea dentro del área radica en la consideración de la in- corporación de operadores booleanos y otro tipo de modificadores a las consultas reformuladas y el control de la diversidad, ambos pensados como un mecanismo para lograr mayor expresión en las consultas y, por lo tanto, mayor poder para expresar los conceptos de interés involucrados. El segundo aporte consiste en proponer un marco de evaluación adecuado para la metodología desarrollada y el estudio y comparación con otras técnicas. Por último, el aporte final aborda la aplicación de los métodos desarrollados en dominios específicos tales como bioinformática (e.g. para identificación de interacciones entre entidades biológicas) o redes sociales (e.g. para realizar minería de opiniones mediante trackers temáticos).
Eje: Agentes y Sistemas Inteligentes
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
extracción de conocimiento
Data mining
computación evolutiva
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/45464

id SEDICI_6980968137d427af72b279c315b69ea5
oai_identifier_str oai:sedici.unlp.edu.ar:10915/45464
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Técnicas evolutivas para la extracción automática de conocimientoBaggio, CeciliaCecchini, Rocío L.Maguitman, Ana GabrielaCiencias Informáticasextracción de conocimientoData miningcomputación evolutivaEsta línea de investigación propone el diseño, desarrollo y evaluación de técnicas automáticas para extracción de conocimiento, de tal forma que sean capaces de sobrellevar la búsqueda dentro de grandes espacios de información. Para ello se propone, en primera instancia, la resolución de un problema de interés general: el de reformulación automática de consultas. Una resolución automática para este problema podría ser utilizada en diversas aplicaciones, tales como monitorear un tópico de interés, especificar trackers temáticos sobre redes sociales, identificar entidades y relaciones entre entidades en grandes corpus de documentos o recolectar material para portales temáticos. Por sus características (alta dimensionalidad del espacio de búsqueda, carencia de subestructura optima, posibilidad de aprovechamiento de múltiples soluciones) el uso de computación evolutiva parece adecuado para abordar su resolución. Un primer aporte de esta línea dentro del área radica en la consideración de la in- corporación de operadores booleanos y otro tipo de modificadores a las consultas reformuladas y el control de la diversidad, ambos pensados como un mecanismo para lograr mayor expresión en las consultas y, por lo tanto, mayor poder para expresar los conceptos de interés involucrados. El segundo aporte consiste en proponer un marco de evaluación adecuado para la metodología desarrollada y el estudio y comparación con otras técnicas. Por último, el aporte final aborda la aplicación de los métodos desarrollados en dominios específicos tales como bioinformática (e.g. para identificación de interacciones entre entidades biológicas) o redes sociales (e.g. para realizar minería de opiniones mediante trackers temáticos).Eje: Agentes y Sistemas InteligentesRed de Universidades con Carreras en Informática (RedUNCI)2015-04info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/45464spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:43:53Zoai:sedici.unlp.edu.ar:10915/45464Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:43:53.524SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Técnicas evolutivas para la extracción automática de conocimiento
title Técnicas evolutivas para la extracción automática de conocimiento
spellingShingle Técnicas evolutivas para la extracción automática de conocimiento
Baggio, Cecilia
Ciencias Informáticas
extracción de conocimiento
Data mining
computación evolutiva
title_short Técnicas evolutivas para la extracción automática de conocimiento
title_full Técnicas evolutivas para la extracción automática de conocimiento
title_fullStr Técnicas evolutivas para la extracción automática de conocimiento
title_full_unstemmed Técnicas evolutivas para la extracción automática de conocimiento
title_sort Técnicas evolutivas para la extracción automática de conocimiento
dc.creator.none.fl_str_mv Baggio, Cecilia
Cecchini, Rocío L.
Maguitman, Ana Gabriela
author Baggio, Cecilia
author_facet Baggio, Cecilia
Cecchini, Rocío L.
Maguitman, Ana Gabriela
author_role author
author2 Cecchini, Rocío L.
Maguitman, Ana Gabriela
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
extracción de conocimiento
Data mining
computación evolutiva
topic Ciencias Informáticas
extracción de conocimiento
Data mining
computación evolutiva
dc.description.none.fl_txt_mv Esta línea de investigación propone el diseño, desarrollo y evaluación de técnicas automáticas para extracción de conocimiento, de tal forma que sean capaces de sobrellevar la búsqueda dentro de grandes espacios de información. Para ello se propone, en primera instancia, la resolución de un problema de interés general: el de reformulación automática de consultas. Una resolución automática para este problema podría ser utilizada en diversas aplicaciones, tales como monitorear un tópico de interés, especificar trackers temáticos sobre redes sociales, identificar entidades y relaciones entre entidades en grandes corpus de documentos o recolectar material para portales temáticos. Por sus características (alta dimensionalidad del espacio de búsqueda, carencia de subestructura optima, posibilidad de aprovechamiento de múltiples soluciones) el uso de computación evolutiva parece adecuado para abordar su resolución. Un primer aporte de esta línea dentro del área radica en la consideración de la in- corporación de operadores booleanos y otro tipo de modificadores a las consultas reformuladas y el control de la diversidad, ambos pensados como un mecanismo para lograr mayor expresión en las consultas y, por lo tanto, mayor poder para expresar los conceptos de interés involucrados. El segundo aporte consiste en proponer un marco de evaluación adecuado para la metodología desarrollada y el estudio y comparación con otras técnicas. Por último, el aporte final aborda la aplicación de los métodos desarrollados en dominios específicos tales como bioinformática (e.g. para identificación de interacciones entre entidades biológicas) o redes sociales (e.g. para realizar minería de opiniones mediante trackers temáticos).
Eje: Agentes y Sistemas Inteligentes
Red de Universidades con Carreras en Informática (RedUNCI)
description Esta línea de investigación propone el diseño, desarrollo y evaluación de técnicas automáticas para extracción de conocimiento, de tal forma que sean capaces de sobrellevar la búsqueda dentro de grandes espacios de información. Para ello se propone, en primera instancia, la resolución de un problema de interés general: el de reformulación automática de consultas. Una resolución automática para este problema podría ser utilizada en diversas aplicaciones, tales como monitorear un tópico de interés, especificar trackers temáticos sobre redes sociales, identificar entidades y relaciones entre entidades en grandes corpus de documentos o recolectar material para portales temáticos. Por sus características (alta dimensionalidad del espacio de búsqueda, carencia de subestructura optima, posibilidad de aprovechamiento de múltiples soluciones) el uso de computación evolutiva parece adecuado para abordar su resolución. Un primer aporte de esta línea dentro del área radica en la consideración de la in- corporación de operadores booleanos y otro tipo de modificadores a las consultas reformuladas y el control de la diversidad, ambos pensados como un mecanismo para lograr mayor expresión en las consultas y, por lo tanto, mayor poder para expresar los conceptos de interés involucrados. El segundo aporte consiste en proponer un marco de evaluación adecuado para la metodología desarrollada y el estudio y comparación con otras técnicas. Por último, el aporte final aborda la aplicación de los métodos desarrollados en dominios específicos tales como bioinformática (e.g. para identificación de interacciones entre entidades biológicas) o redes sociales (e.g. para realizar minería de opiniones mediante trackers temáticos).
publishDate 2015
dc.date.none.fl_str_mv 2015-04
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/45464
url http://sedici.unlp.edu.ar/handle/10915/45464
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846782944382812160
score 12.982451